Advertisement

Extinction and Coexistence in the Internet Market as Complex Networks

  • Jiandong Zhao
  • Liping Fu
  • Rongfu Cheng
  • Jiong Ruan
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

A model based on nonautonomous Lotka-Volterra system for web site growth is considered in this paper. Under the conditions that the parameters change with time and the competition conditions are dynamically evaluated, we show that the model exhibits some important characteristics, such as winning alliance and winner-take-all. It is shown that our results are improvement of those of Maurer and Huberman [Journal of Economic Dynamics & Control 27, 2195-2206(2003)], López and Sanjuán [Physica A 301, 512-534(2001)] and López et al. [Physica A 324, 754-758(2003)].

Keywords

Competitive Internet market Complex networks Extinction Coexistence Lotka-Volterra system 

PACS

02.60.Lj 89.20.Hh 89.75.-k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maurer, S.M., Huberman, B.A.: Competitive dynamics of web sites. Journal of Economic Dynamics & Control 27, 2195–2206 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Frank, R.H., Cook, P.J.: The Winner-take-all Society. The Free Press, New York (1995)Google Scholar
  3. 3.
    López, L., Sanjuán, M.A.F.: Defining strategies to win in the Internet market. Physica A 301, 512–534 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    López, L., Almendral, J.A., Sanjuán, M.A.F.: Complex networks and the WWW market. Physica A 324, 754–758 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ahmad, S., Lazer, A.C.: Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system. Nonlinear Anal. 40, 37–49 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zhao, J.D., Jiang, J.F., Lazer, A.C.: The permanence and global attractivity in a nonautonomous Lotka-Volterra system. Nonlinear Anal. R.W.A. 5, 265–276 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhao, J.D., Jiang, J.F.: Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system. J. Math. Anal. Appl. 299, 663–675 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Jiandong Zhao
    • 1
    • 2
  • Liping Fu
    • 3
  • Rongfu Cheng
    • 4
  • Jiong Ruan
    • 2
  1. 1.School of Mathematics and InformationLudong University, YantaiShandongP.R. China
  2. 2.School of Mathematical SciencesFudan UniversityShanghaiP.R. China
  3. 3.LibraryLudong University, YantaiShandongP.R. China
  4. 4.College of MathematicsBeihua University, JilinJilinP.R. China

Personalised recommendations