Generalized Greedy Algorithm for Shortest Superstring

  • Zhengjun Cao
  • Lihua Liu
  • Olivier Markowitch
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)


In the primitive greedy algorithm for shortest superstring, if a pair of strings with maximum overlap picked out, they are subsequently merged. In this paper, we introduce the concept of optimal set and generalize the primitive greedy algorithm. The generalized algorithm can be reduced to the primitive greedy algorithm if the relative optimal set is empty. Consequently, the new algorithm achieves a better bound at the expense of cost. But the cost is acceptable in practice.


greedy algorithm shortest superstring optimal set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armen, C., Stein, C.: A 2 2/3-approximation algorithm for the shortest superstring problem. In: CPM, pp. 87–101 (1996)Google Scholar
  2. 2.
    Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest superstrings. Journal of ACM 41(4), 630–647 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Breslauer, D., Jiang, T., Jiang, Z.: Rotations of periodic strings and short superstrings. J. Algorithms 24(2), 340–353 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Czumaj, A., Gasieniec, L., Piotrow, M., Rytter, W.: Parallel and sequential approximations of shortest superstrings. In: Scandinavian Workshop on Algorithm Theory, pp. 95–106 (1994)Google Scholar
  5. 5.
    Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Inf. Process. Lett. 93(1), 13–17 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lesk, A. (ed.): Computational Molecular Biology, sources and methods for sequence analysis. Oxford University Press, Oxford (1988)Google Scholar
  7. 7.
    Li, M.: Towards a DNA sequencing theory. In: 31st IEEE Symp. on Foundations of Computer Science, pp. 125–134 (1990)Google Scholar
  8. 8.
    Gallant, J., Maier, D., Storer, J.: On finding minimal length superstrings. Journal of Computer and System Sciences 20, 50–58 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Peltola, H., Soderlund, H., Tarhio, J., Ukkonen, E.: Algorithms for some string matching problems arising in molecular genetics. In: Proc. IFIP Congress, pp. 53–64 (1983)Google Scholar
  10. 10.
    Sweedyk, Z.: A 2 1/2-approximation algorithm for shortest superstring. SIAM J. Comput. 29(3), 954–986 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Vazirani, V.: Approximation algorithm, pp. 61–66. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Zhengjun Cao
    • 1
    • 2
  • Lihua Liu
    • 3
  • Olivier Markowitch
    • 2
  1. 1.Department of MathematicsShanghai UniversityShanghaiChina
  2. 2.Department of Computer SciencesUniversité Libre de BruxellesBelgium
  3. 3.Department of MathematicsShanghai Maritime UniversityChina

Personalised recommendations