Advertisement

A Comparative Analysis of Specific Spatial Network Topological Models

  • Jun Wang
  • Gregory Provan
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

Creating ensembles of random but “realistic” topologies for complex systems is crucial for many tasks such as benchmark generation and algorithm analysis. In general, explanatory models are preferred to capture topologies of technological and biological complex systems, and some researchers claimed that it is largely impossible to capture any nontrivial network structure while ignoring domain-specific constraints. We study topology models of specific spatial networks, and show that a simple descriptive model, the generalized random graph model (GRG) which only reproduces the degree sequence of complex networks, can closely match the topologies of a variety of real-world spatial networks including electronic circuits, brain and neural networks and transportation networks, and outperform some plausible and explanatory models which consider spatial constraints.

Keywords

Spatial Networks Random Graph Models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, J., Provan, G.M.: Generating application-specific benchmark models for complex systems. In: AAAI, pp. 566–571 (2008)Google Scholar
  2. 2.
    Li, L., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: Definition, properties, and implications. Internet Mathematics 2(4), 431–523 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the iscas-85 benchmarks: A case study in reverse engineering. IEEE Des. Test 16(3), 72–80 (1999)CrossRefGoogle Scholar
  5. 5.
    He, Y., Chen, Z.J.J., Evans, A.C.C.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex (2007)Google Scholar
  6. 6.
    Kaiser, M., Hilgetag, C.C.: Spatial growth of real-world networks. Phys. Rev. E 69(3), 036103 (2004)CrossRefGoogle Scholar
  7. 7.
    Dambre, J.: Prediction of interconnect properties for digital circuit design and technology exploration. Ph.D. dissertation: Ghent University, Faculty of Engineering (2003)Google Scholar
  8. 8.
    Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97(21), 11149–11152 (2000)CrossRefGoogle Scholar
  9. 9.
    Mahadevan, P., Krioukov, D.V., Fall, K.R., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: SIGCOMM, pp. 135–146 (2006)Google Scholar
  10. 10.
    Middendorf, M., Ziv, E., Wiggins, C.H.: Inferring network mechanisms: the drosophila melanogaster protein interaction network. Proc. Natl. Acad. Sci. USA 102(9), 3192–3197 (2005)CrossRefGoogle Scholar
  11. 11.
    Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends in Cognitive Sciences 8, 418–425 (2004)CrossRefGoogle Scholar
  12. 12.
    Kaiser, M.: Brain architecture: a design for natural computation. Philosophical Transactions of the Royal Society A 365, 3033–3045 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chklovskii, D.B.: Exact solution for the optimal neuronal layout problem. Neural Comput. 16(10), 2067–2078 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kaiser, M., Hilgetag, C.C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Computational Biology 2(7), e95+ (2006)CrossRefGoogle Scholar
  15. 15.
    Costa, L., Kaiser, M., Hilgetag, C.: Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Systems Biology 1, 16 (2007)CrossRefGoogle Scholar
  16. 16.
    Cancho, R.F.i., Janssen, C., Solé, R.V.: Topology of technology graphs: Small world patterns in electronic circuits. Physical Review E 64(4), 046119 (2001)CrossRefGoogle Scholar
  17. 17.
    Dorogovtsev, S.N., Mendes, J.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633–4636 (2000)CrossRefGoogle Scholar
  18. 18.
    Guimera, R., Amaral, L.: Modeling the world-wide airport network. The European Physical Journal B - Condensed Matter 38(2), 381–385 (2004)Google Scholar
  19. 19.
    Li, W., Cai, X.: Statistical analysis of airport network of china. Phys. Rev. E 69(4), 046106 (2004)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Jun Wang
    • 1
  • Gregory Provan
    • 1
  1. 1.Department of Computer ScienceUniversity College CorkIreland

Personalised recommendations