Advertisement

A Preliminary Study on the Effects of Fear Factors in Disease Propagation

  • Yubo Wang
  • Jie Hu
  • Gaoxi Xiao
  • Limsoon Wong
  • Stefan Ma
  • Tee Hiang Cheng
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

Upon an outbreak of a dangerous infectious disease, people generally tend to reduce their contacts with others in fear of getting infected. Such typical actions apparently help to reduce the outbreak size. Thanks to today’s broad media coverage, the fear factor may also contribute to preventing an outbreak from happening at all. We are motivated to conduct a careful study on modeling and evaluating such effects with a complex network approach. As a first step of this study, we consider the relatively simple case where involved individuals randomly remove a certain fraction of links between them. Analytical and simulation results show that such an action cannot effectively prevent an epidemic outbreak from happening. However, it may significantly reduce the fraction of all the people ever getting infected when an outbreak does happen.

Keywords

complex networks scale-free networks fear factor epidemic threshold average outbreak size prevalence size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Heath Organization, http://www.who.int/csr/sars/en/
  2. 2.
    Gupta, S., Anderson, R.M., May, R.M.: Networks of Sexual Contacts: Implications for the Pattern of Spread of HIV. AIDS 3, 807–817 (1989)CrossRefGoogle Scholar
  3. 3.
    Morris, M.: Sexual Networks and HIV. AIDS 97: Year in Review 11, 209–216 (1997)Google Scholar
  4. 4.
    Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Áberg, Y.: The Web of Human Sexual Contacts. Nature 411, 907–908 (2001)CrossRefGoogle Scholar
  5. 5.
    Newman, M.E.J.: Spread of Epidemic Disease on Networks. Phys. Rev. E 66, 016128 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic Outbreaks in Complex Heterogeneous Networks. Eur. Phys. J. B 26, 521–529 (2002)Google Scholar
  7. 7.
    Boguñá, M., Pastor-Satorras, R.: Epidemic Spreading in Correlated Complex Networks. Phy. Rev. E 66, 047104 (2002)CrossRefGoogle Scholar
  8. 8.
    Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bornholdt, S., Schuster, H.G. (eds.): Handbook of Graphs and Networks. Wiley-VCH, Berlin (2003)zbMATHGoogle Scholar
  10. 10.
    Barabási, A.-L., Albert, R.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–98 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pastor-Satorras, R., Vespignani, A.: Epidemic Spreading in Scale-free Networks. Phys. Rev. Lett. 86, 3200 (2001)CrossRefGoogle Scholar
  12. 12.
    Pastor-Satorras, R., Vespignani, A.: Epidemic Dynamics in Finite Size Scale-free Networks. Phys. Rev. E 65, 035108 (2002)CrossRefGoogle Scholar
  13. 13.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1991)Google Scholar
  14. 14.
    Hethcote, H.W.: The Mathematics of Infectious Diseases. SIAM Review 42, 599–653 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Herbert, S.W.: Generatingfunctionology. Academic Press, Harcourt Brace Jovanovich (1991)zbMATHGoogle Scholar
  16. 16.
    Martin, S., Carr, R.D., Faulon, J.-L.: Random Removal of Edges from Scale-free Graphs. Physica A 371(2), 870–876 (2006)CrossRefGoogle Scholar
  17. 17.
    Stumpf, M.P.H., Wiuf, C., May, R.M.: Subnets of Scale-free Networks Are Not Scale-free: Sampling Properties of Networks. PNAS 102(12) (2005)Google Scholar
  18. 18.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random Graphs with Arbitrary Degree Distributions and Their Applications. Physical Review E 64 (2001)Google Scholar
  19. 19.
    Warren, C.P., Sander, L.M., Sokolov, I.M.: Firewalls, Disorder, and Percolation in Epidemics. cond-mat/0106450 v1 (2001)Google Scholar
  20. 20.
    Sander, L.M., Warren, C.P., Sokolov, I., Simon, C., Koopman, J.: Percolation on Disordered Networks as a Model for Epidemics. Math. Biosci. 180, 293–305 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Moore, C., Newman, M.E.J.: Exact Solution of Site and Bond Percolation on Small-World Networks. Phy. Rev. E 62, 7059–7064 (2000)CrossRefGoogle Scholar
  22. 22.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Adv. Phys. 51, 1079 (2002)CrossRefGoogle Scholar
  23. 23.
    Newman, M.E.J.: Assortative Mixing in Networks. Phys. Rev. Lett. 89, 208701 (2002)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Yubo Wang
    • 1
  • Jie Hu
    • 1
  • Gaoxi Xiao
    • 1
  • Limsoon Wong
    • 2
  • Stefan Ma
    • 3
  • Tee Hiang Cheng
    • 1
  1. 1.School of Electrical and Electronic EngineeringNanyang Technology UniversitySingapore
  2. 2.School of Computing and School of MedicineNational University of SingaporeSingapore
  3. 3.Epidemiology & Disease Control DivisionMinistry of HealthSingapore

Personalised recommendations