Advertisement

A More Strict Definition of Steady State Degree Distribution

  • Xiaojun Zhang
  • Zheng He
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

Accurate definitions of related concepts are prerequisite for further understanding of evolving network. To be an important concept, steady state degree distribution has been widely used. However, as we find out, all current definitions have a common default from mathematics point of view. In this paper, we first point out the shortcoming of current definitions through a special type of evolving network, and then provide a more strict definition of steady state degree distribution from stochastic process point of view.

Keywords

Steady state degree distribution evolving network stochastic process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabási, A.L., Albert, R., Jeong, H.: Mean-field Theory of Scale-free Random Networks. Phys. A 272, 173–187 (1999)CrossRefGoogle Scholar
  2. 2.
    Dorogovtsev, S.N., Mendes, J.F.F.: Effect of the Accelerating Growth of Communication Networks on Their Structure. Phys. Rev. E 63, 025101 (2001)CrossRefGoogle Scholar
  3. 3.
    Shi, D.H., Chen, Q.H., Liu, L.M.: Markov Chain-based Numerical Method for Degree Distributions of Growing Networks. Phys. Rev. E 71, 036140 (2005)CrossRefGoogle Scholar
  4. 4.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Advances in Phys. 519, 107–174 (2002)Google Scholar
  5. 5.
    Albert, R., Barabási, A.L.: Topology of Evolving Networks: Local Events and Universality. Phys. Rev. Lett. 85(24), 5234–5237 (2000)CrossRefGoogle Scholar
  6. 6.
    Jennifer, L.S., Hughes, B.D., Landman, K.A.: Evolving Mortal Networks. Phys. Rev. E 73, 066111 (2006)CrossRefGoogle Scholar
  7. 7.
    Li, X., Chen, G.R.: A Local World Evolving Network Model. Phys. A 328, 274–286 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of Growing Random Networks. Phys. Rev. Lett. 85, 4629–4632 (2000)CrossRefGoogle Scholar
  9. 9.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of Growth Networks with Preferential Linking. Phys. Rev. Lett. 85, 4633–4636 (2000)CrossRefGoogle Scholar
  10. 10.
    Guo, J.L.: A New Approach Research Dynamic Complex Networks. Sys. Engi. - Theory & Practice 7, 33–40 (2006)Google Scholar
  11. 11.
    Chan, D.Y.C., Hughes, B.D., Leong, A.S.: Stochastically Evolving Networks. Phys. Rev. E 68, 066124 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Volz, E.: Random Networks with Tunable Degree Distribution and Clustering. Phys. Rev. E 70, 056115 (2004)CrossRefGoogle Scholar
  13. 13.
    Mohanty, P.K., Jalan, S.: Analytical results for stochastically growing networks: Connection to the zero-range process. Phys. Rev. E 77, 045102(R) (2008)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Xiaojun Zhang
    • 1
  • Zheng He
    • 2
  1. 1.School of Applied MathematicsChina
  2. 2.School of Management and EconomicsUniversity of Electronic Science and Technology of ChinaChengduP.R. China

Personalised recommendations