A New Bio-inspired Approach to the Traveling Salesman Problem

  • Xiang Feng
  • Francis C. M. Lau
  • Daqi Gao
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)


The host-seeking behavior of mosquitoes is very interesting. In this paper, we propose a novel mosquito host-seeking algorithm (MHSA) as a new branch of biology-inspired algorithms for solving TSP problems. The MHSA is inspired by the host-seeking behavior of mosquitoes. We present the mathematical model, the algorithm, the motivation, and the biological model. The MHSA can work out the theoretical optimum solution, which is important and exciting, and we give the theoretical foundation and present experiment results that verify this fact.


Bio-inspired algorithm traveling salesman problem (TSP) mosquito host-seeking algorithm (MHSA) distributed and parallel algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crescenzi, P., Kann, V.: A Compendium of NP Optimization Problems (1998),
  2. 2.
    Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1976)Google Scholar
  3. 3.
    Schwefel, H.: Evolution and Optimum Seeking. John Wiley, New York (1995)zbMATHGoogle Scholar
  4. 4.
    Porto, V.: Evolutionary programming. In: Bäck, T., Fogel, D., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, Institute of Physics, Bristol (1997)Google Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Systems, Man, Cybernet., Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  6. 6.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE Conf. Neural Networks, pp. 1942–1948. IEEE Press, Los Alamitos (1995)Google Scholar
  7. 7.
    Farmer, J., Packard, N., Perelson, A.: The Immune System, Adaptation, and Machine Learning. Physica D 2, 187–204 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation. Addison-Wesley, Reading (1991)Google Scholar
  9. 9.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Durbin, R., Willshaw, D.: An Analogue Approach to the Travelling Salesman Problem Using an Elastic Net Method. Nature 326(6114), 689–691 (1987)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Xiang Feng
    • 1
  • Francis C. M. Lau
    • 2
  • Daqi Gao
    • 1
  1. 1.East China University of Science and TechnologyShanghaiChina
  2. 2.The University of Hong KongHong KongChina

Personalised recommendations