Chaotic and Hyperchaotic Attractors in Time-Delayed Neural Networks

  • Dong Zhang
  • Jian Xu
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)


It is well known that complex dynamic behaviors exist in time-delayed neural networks. Infinite positive Lyapunov exponents can be found in time-delayed chaotic systems since the dimension of such systems is infinite. This paper presents an infinite-dimension hyperchaotic time-delayed neuron system with sinusoidal activation function. The hyperchaotic neuron system is studied by Lyapunov exponent, phase diagram, Poincare section and power spectrum. Numerical simulations show that the new system’s behavior can be convergent, periodic, chaotic and hyperchaotic when the time-delay parameter varies.


neuron system time delay hyperchaos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 8 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Guo, R.W.: A simple adaptive controller for chaos and hyperchaos synchronization. Physics Letters A 372, 5593–5597 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Vincent, U.E.: Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos Solitons & Fractals 37, 1065–1075 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Yu, W.W., Cao, J.D.: Synchronization of switched system and application in communication. Physics Letters A 372, 4438–4445 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Perez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1999)CrossRefGoogle Scholar
  6. 6.
    Xu, X., Hu, H.Y., Wang, H.L.: Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters. Physics Letters A 354, 126–136 (2006)CrossRefGoogle Scholar
  7. 7.
    Lu, H.T.: Chaotic attractors in delayed neural networks. Physics Letters A 298, 109–116 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Wang, X.F., Chen, G.R., Kim, F.M.: Chaotifying a continuous-time system by time-delay feedback. ISCAS 5, 28–31 (2000)Google Scholar
  9. 9.
    Liao, X.F., Wong, K.W.: Hopf bifurcation and chaos in a single delayed neuron equation with non-monotonic activation function. Chaos, Solitons & Fractals 12, 1535–1547 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhou, S.B., Liao, X.F.: Chaos and its synchronization in two-neuron systems with discrete delays. Chaos, Solitons & Fractals 21, 133–142 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hale, J.: Theory of Functional Differential equations. Springer, New York (1977)CrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, X.Y., Wang, M.J.: A hyperchaos generated from Lorenz system. Physica A 387, 3751–3758 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hansel, D., Sompolinsky, H.: Synchronization and computation in a chaotic neural network. Phys. Rev. Lett. 68, 718–721 (1992)CrossRefGoogle Scholar
  14. 14.
    Freeman, W.J.: Tutorial on neurobiology: from single neuron to brain chaos. International Journal of Bifurcation and Chaos 2, 451–482 (1992)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, C.M., Kye, W.H.: Communication key using delay times in time-delayed chaos synchronization. Physics Letters A 333, 235–240 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Liu, Y.W., Ge, G.M.: Synchronization of hyperchaotic harmonics in time-delay systems and its application to secure communication. Physical Review E 62, 7898–7904 (2000)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Dong Zhang
    • 1
  • Jian Xu
    • 1
  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiChina

Personalised recommendations