Topological Analysis and Measurements of an Online Chinese Student Social Network

  • Duoyong Sun
  • Jiang Wu
  • Shenghua Zheng
  • Bin Hu
  • Kathleen M. Carley
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 4)


Online social network attracts more researchers now. In this paper, we topologically analyze an online Chinese student social network– We use Python language to crawl two datasets of Xiaonei in January and February, 2008. The degree distribution and small world phenomena are testified. We also use a social network analysis tool to analyze these two datasets from the viewpoint of social network structure. Seventeen measurements such as Fragmentation, Component Count, Strong/Weak are summarized to identify the exogenous attributes of Additionally, two latent applications of online social network service are proposed in the discussion section.


Online Social Network Topological Analysis SNA Complex Network Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ralph Gross, A.A.: Information Revelation and Privacy in Online Social Networks (The Facebook case). In: ACM Workshop on Privacy in the Electronic Society (WPES) (2005)Google Scholar
  2. 2.
    Ravi Kumar, J.N., Tomkins, A.: Structure and Evolution of Online Social Networks. In: Proceedings of 12th International Conference on Knowledge Discovery in Data Mining, ACM Press, New York (2006)Google Scholar
  3. 3.
    Alan Mislove, M.M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement. 2007, San Diego, California, USA. ACM, New York (2007)Google Scholar
  4. 4.
    Lampe, C., Ellison, N., Steinfeld, C.: A familiar Face (book): Profile elements as signals in an online social network. In: Proceedings of Conference on Human Factors in Computing Systems. ACM Press, New York (2007)Google Scholar
  5. 5.
    Fu, F., Long Wang, L.L.: Empirical analysis of online social networks in the age of Web 2.0. Physica A 387, 675–684 (2008)CrossRefGoogle Scholar
  6. 6.
    Scott, A., Golder, D.W., Huberman, B.A.: Rhythms of social interaction: messaging within a massive online network. In: 3rd International Conference on Communities and Technologies (CT 2007), East Lansing, MI, June 28-30 (2007)Google Scholar
  7. 7.
    Jeffrey Heer, D.B.: Vizster: Visualizing Online Social Networks. In: Proceedings of the 2005 IEEE Symposium on Information Visualization (INFOVIS 2005) (2005)Google Scholar
  8. 8.
    Acquisti, A., Gross, R.: Imagined communities: Awareness, information sharing, and privacy on the Facebook. In: Proceedings of 6th Workshop on Privacy Enhancing Technologies. Robinson College, Cambridge (2006)Google Scholar
  9. 9.
    Carley Kathleen, C.D., Matt, D., Jeffrey, R., Moon, I.-C.: ORA User’s Guide, 2007, Carnegie Mellon University, School of Computer Science, Institute for Software Research, p. 388 (2007)Google Scholar
  10. 10.
    Wasserman Stanley, K.F.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sege, I.: Where everybody knows your name (April 27, 2005) Boston.comGoogle Scholar
  12. 12.
    YongYeol Ahn, S.H., Kwak, H.: Analysis of Topological Characteristics of Huge Online Social Networking Services. In: International World Wide Web Conference, Banff, Alberta, Canada (2007)Google Scholar
  13. 13.
    Thomas Lento, H.T.W., Gu, L.: The Ties that Blog: Examining the Relationship Between Social Ties and Continued Participation in the Wallop Weblogging System (2007)Google Scholar
  14. 14.
    Newman, M.: The Structure and Function of Complex Networks. SIAM Review 56, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E 64 (016132) (2001)Google Scholar
  16. 16.
    Watts, D.J., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  17. 17.
    David, K.: Graph Theoretical Dimensions of Informal Organizations. In: Carley, M.J.P.H., Kathleen, M. (eds.) Computational Organization Theory. Lawrence Erlbaum Associates, NJ (1994)Google Scholar
  18. 18.
    Carley, K.: Summary of Key Network Measures for Characterizing Organizational Architectures, Carnegie Mellon University (2002)Google Scholar
  19. 19.
    Latora, V., Marchiori, M.: Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 87(19) (2001)Google Scholar
  20. 20.
    Borgatti, S.P.: The Key Player Problem. Dynamic Social Network Modeling and Analysis. In: Committee on Human Factors, National Research Council, Workshop Summary and Papers (2003)Google Scholar
  21. 21.
    David, K., Tie, S.: Super Strong and Sticky. Power and Influence in Organizations. In: Roderick Kramer, M.N. (ed.), pp. 21–38. Sage, Thousand Oaks (1998)Google Scholar
  22. 22.
    Freeman, L.C.: Centrality in Social Networks I: Conceptual Clarification. Social Networks 1, 215–239 (1979)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Duoyong Sun
    • 1
  • Jiang Wu
    • 2
  • Shenghua Zheng
    • 3
  • Bin Hu
    • 2
  • Kathleen M. Carley
    • 4
  1. 1.College of Information System and ManagementNational University of Defense TechnologyChangsha, HunanChina
  2. 2.Huazhong University of Science and TechnologyWuhanChina
  3. 3.Zhejiang University of TechnologyHangzhouChina
  4. 4.CASOS, ISRICarnegie Mellon UniversityPittsburghUSA

Personalised recommendations