Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5600))

Abstract

The Knowledge Base Management Systems (KBMS) Project at the University of Toronto (1985-1995) was inspired by a need for advanced knowledge representation applications that require knowledge bases containing hundreds of thousands or even millions of knowledge units. The knowledge representation language Telos provided a framework for the project. The key results included conceptual modeling innovations in the use of semantic abstractions, representations of time and space, and implementation techniques for storage management, query processing, rule management, and concurrency control. In this paper, we review the key ideas introduced in the KBMS project, and connect them to some of the work since the conclusion of the project that is either closely related to or directly inspired by it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Neches, R., Fikes, R., Finin, T.W., Gruber, T.R., Patil, R.S., Senator, T.E., Swartout, W.R.: Enabling technology for knowledge sharing. AI Magazine 12(3), 36–56 (1991)

    Google Scholar 

  2. Frenkel, K.A.: The Human Genome Project and informatics. Communications of the ACM 34(11), 41–51 (1991)

    Article  Google Scholar 

  3. Mylopoulos, J., Chaudhri, V.K., Plexousakis, D., Shrufi, A., Topaloglou, T.: Building knowledge base management systems. The VLDB Journal 5(4), 238–263 (1996)

    Article  Google Scholar 

  4. Koubarakis, M.: Foundations of Temporal Constraint Databases. PhD thesis, Computer Science Division, Dept. of Electrical and Computer Engineering, National Technical University of Athens (February 1994)

    Google Scholar 

  5. Chaudhri, V.K.: Transaction Synchronization in Knowledge Bases: Concepts, Realization and Quantitative Evaluation. PhD thesis, University of Toronto, Toronto (January 1995)

    Google Scholar 

  6. Plexousakis, D.: Integrity Constraint and Rule Maintenence in Temporal Deductive Knowledge Bases. PhD thesis, University of Toronto, Toronto (1996)

    Google Scholar 

  7. Topalogou, T.: On the Representation of Spatial Knowledge in Knowledge Bases. PhD thesis, University of Toronto, Toronto (1996)

    Google Scholar 

  8. Jurisica, I.: TA3: Theory, Implementation, and Applications of Similarity-Based Retrieval for Case-Based Reasoning. PhD thesis, University of Toronto, Department of Computer Science, Toronto, Ontario (1998)

    Google Scholar 

  9. Topaloglou, T., Koubarakis, M.: Implementation of Telos: Problems and Solutions. Technical Report KRR-TR-89-8, Dept. of Computer Science, University of Toronto (1989)

    Google Scholar 

  10. Plexousakis, D.: An Ontology and a Possible-Worlds Semantics for Telos. Master’s thesis, Dept. of Computer Science, University of Toronto (1990)

    Google Scholar 

  11. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: A language for representing knowledge about information systems. ACM Transactions on Information Systems 8(4), 325–362 (1990)

    Article  Google Scholar 

  12. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  13. Koubarakis, M.: The complexity of query evaluation in indefinite temporal constraint databases. Theoretical Computer Science 171, 25–60 (1997); Special Issue on Uncertainty in Databases and Deductive Systems, Lakshmanan, L.V.S. (ed.)

    Google Scholar 

  14. Constantopoulos, P., Doerr, M., Vassiliou, Y.: Repositories for software reuse: The software information base. In: Information System Development Process, pp. 285–307 (1993)

    Google Scholar 

  15. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.: ConceptBase - A deductive object base for meta data management. Journal of Intelligent Information Systems 4(2), 167–192 (1995)

    Article  Google Scholar 

  16. Wang, H., Mylopoulos, J., Kusniruk, A., Kramer, B., Stanley, M.: KNOWBEL: New tools for expert system development. In: Bourbakis, N.G. (ed.) Developement of Knowledge-Based Shells. Advanced Series on Artificial Intelligence, World Scientific, Singapore (1993)

    Google Scholar 

  17. Topaloglou, T.: Storage management for knowledge bases. In: CIKM 1993: Proceedings of the Second International Conference on Information and Knowledge Management, pp. 95–104. ACM, New York (1993)

    Chapter  Google Scholar 

  18. Topaloglou, T., Illarramendi, A., Sbattella, L.: Query optimization for KBMSs: Temporal, syntactic and semantic transformantions. In: Golshani, F. (ed.) Proceedings of the Eighth International Conference on Data Engineering, Tempe, Arizona, February 3-7, 1992, pp. 310–319. IEEE Computer Society, Los Alamitos (1992)

    Chapter  Google Scholar 

  19. Shrufi, A., Topaloglou, T.: Query processing for knowledge bases using join indices. In: Proceedings of the 4th International Conference on Information and Knowledge Management, Baltimore (November 1995)

    Google Scholar 

  20. Jurisica, I., Glasgow, J., Mylopoulos, J.: Incremental iterative retrieval and browsing for efficient conversational CBR systems. International Journal of Applied Intelligence 12(3), 251–268 (2000)

    Article  Google Scholar 

  21. Jurisica, I., Mylopoulos, J., Glasgow, J., Shapiro, H., Casper, R.F.: Case-based reasoning in IVF: Prediction and knowledge mining. Artif. Intell. Med. 12(1), 1–24 (1998)

    Article  Google Scholar 

  22. Jurisica, I., Rogers, P., Glasgow, J., Collins, R., Wolfley, J., Luft, J., DeTitta, G.: Improving objectivity and scalability in protein crystallization: Integrating image analysis with knowledge discovery. IEEE Intelligent Systems Journal, Special Issue on Intelligent Systems in Biology, 26–34 (November/December 2001)

    Google Scholar 

  23. Jurisica, I., Rogers, P., Glasgow, J., Fortier, S., Luft, J., Wolfley, J., Bianca, M., Weeks, D., DeTitta, G.T.: Intelligent decision support for protein crystal growth. IBM Systems Journal, Special Issue on Deep Computing for Life Sciences 40(2), 394–409 (2001)

    Google Scholar 

  24. Jurisica, I., Glasgow, J.: Application of case-based reasoning in molecular biology. Artificial Intelligence Magazine, Special issue on Bioinformatics 25(1), 85–95 (2004)

    Google Scholar 

  25. Arshadi, N., Jurisica, I.: Integrating case-based reasoning systems with data mining techniques for discovering and using disease biomarkers. IEEE Transactions on Knowledge and Data Engineering. Special Issue on Mining Biological Data 17(8), 1127–1137 (2005)

    Article  Google Scholar 

  26. Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D., Shepherd, M.: Cyc: Toward programs with common sense. Commun. ACM 33(8), 30–49 (1990)

    Article  Google Scholar 

  27. Borgida, A., Brachman, R., McGuiness, D., Resnick, L.: CLASSIC: A structural data model for objects. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 58–67 (1989)

    Google Scholar 

  28. MacGregor, R.M., Brill, D.: Recognition algorithms for the LOOM classifier. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 774–779 (1992)

    Google Scholar 

  29. Farquhar, A., Fikes, R., Rice, J.: The ontolingua server: a tool for collaborative ontology construction. Int. J. Hum.-Comput. Stud. 46(6), 707–727 (1997)

    Article  Google Scholar 

  30. Brachman, R., Schmolze, J.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)

    Article  Google Scholar 

  31. Karp, P.D., Myers, K.L., Gruber, T.R.: The generic frame protocol. In: IJCAI, vol. 1, pp. 768–774 (1995)

    Google Scholar 

  32. Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.: OKBC: A programmatic foundation for knowledge base interoperability. In: AAAI/IAAI, pp. 600–607 (1998)

    Google Scholar 

  33. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43 (2001)

    Google Scholar 

  34. Lassila, O.: The resource description framework. IEEE Intelligent Systems 15(6), 67–69 (2000)

    Article  Google Scholar 

  35. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.: OIL: an ontology infrastructure for the semantic web. IEEE Intelligent Systems 16(2), 38–45 (2001)

    Article  Google Scholar 

  36. Brachman, R.J., Levesque, H.J., Fikes, R.: Krypton: Integrating terminology and assertion. In: AAAI, pp. 31–35 (1983)

    Google Scholar 

  37. Kifer, M., Lausen, G.: F-Logic: A higher-order language for reasoning about objects, inheritance, and scheme. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 134–146 (1989)

    Google Scholar 

  38. Snodgrass, R., Ahn, I.: A taxonomy of time in databases. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 236–246 (1985)

    Google Scholar 

  39. Snodgrass, R.: The temporal query language TQuel. ACM Transcactions on Database Systems 12(2), 247–298 (1987)

    Article  MathSciNet  Google Scholar 

  40. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  41. Sripada, S.M.: A logical framework for temporal deductive databases. In: Bancilhon, F., DeWitt, D.J. (eds.) Fourteenth International Conference on Very Large Data Bases, Proceedings, Los Angeles, California, USA, August 29-September 1, 1988, pp. 171–182. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  42. Gutierrez, C., Hurtado, C., Vaisman, A.: Introducing time into RDF. IEEE Transactions on Knowledge and Data Engineering 19(2), 207–218 (2007)

    Article  Google Scholar 

  43. Gutierrez, C., Hurtado, C., Vaisman, R.: Temporal RDF. In: European Conference on the Semantic Web, pp. 93–107 (2005)

    Google Scholar 

  44. Hurtado, C., Vaisman, A.: Reasoning with temporal constraints in RDF. In: Principles and Practice of Semantic Web Reasoning, pp. 164–178. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  45. Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and general tboxes. J. Autom. Reasoning 38(1-3), 227–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chaudhri, V.K., Stickel, M.E., Thomere, J.F., Waldinger, R.J.: Reusing prior knowledge: Problems and solutions. In: Proceedings of the AAAI Conference on Artificial Intelligence (2000)

    Google Scholar 

  47. Cohn, A.G., Bennett, B., Gooday, J.M., Gotts, N.: RCC: A calculus for region based qualitative spatial reasoning. GeoInformatica, 275–316 (1997)

    Google Scholar 

  48. Uribe, T.E., Chaudhri, V.K., Hayes, P.J., Stickel, M.E.: Qualitative spatial reasoning for question-answering: Axiom reuse and algebraic methods. In: Proceedings of the AAAI Spring Symposium on Mining Answers from Texts and Knowledge Bases (2002)

    Google Scholar 

  49. Kolas, D., Self, T.: Spatially-augmented knowledge base. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 785–794. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  50. Perry, M.: A Framework to Support Spatial, Temporal and Thematic Analytics over Semantic Web Data. PhD thesis, Wright State University (2008)

    Google Scholar 

  51. Karp, P.D., Chaudhri, V.K., Paley, S.M.: A collaborative environment for authoring large knowledge bases. J. Intell. Inf. Syst. 13(3), 155–194 (1999)

    Article  Google Scholar 

  52. Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Collado-Vides, J., Paley, S., Pellegrini-Toole, A., Bonavides, C., Gama-Castro, S.: The EcoCyc database. Nucleic Acids Research 30(1), 56–58 (2002)

    Article  Google Scholar 

  53. Chen, I.M.A., Kosky, A., Markowitz, V.M., Szeto, E., Topaloglou, T.: Advanced query mechanisms for biological databases. In: ISMB 1998: Proceedings of the 6th International Conference on Intelligent Systems for Molecular Biology, pp. 43–51. AAAI Press, Menlo Park (1998)

    Google Scholar 

  54. Topaloglou, T., Kosky, A., Markowitz, V.M.: Seamless integration of biological applications within a database framework. In: Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pp. 272–281. AAAI Press, Menlo Park (1999)

    Google Scholar 

  55. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The ICS-FORTH RDF Suite: Managing voluminous RDF description bases. In: Proceedings of the 2nd International Workshop on the Semantic Web (2001)

    Google Scholar 

  56. Cumbaa, C.A., Lauricella, A., Fehrman, N., Veatch, C., Collins, R., Luft, J., DeTitta, G., Jurisica, I.: Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates. Acta Crystallogr. D Biol. Crystallogr. 59(Pt 9), 1619–1627 (2003); 22805983 0907-4449 Journal Article

    Google Scholar 

  57. Acton, B.M., Jurisicova, A., Jurisica, I., Casper, R.F.: Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol. Hum. Reprod. 10(1), 23–32 (2004)

    Article  Google Scholar 

  58. Jurisica, I., Wigle, D.A.: Knowledge Discovery in Proteomics. Mathematical Biology and Medicine. Chapman and Hall/CRC Press (2006)

    Google Scholar 

  59. Arshadi, N., Jurisica, I.: An ensemble of case-based classifiers for high-dimensional biological domains. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 21–34. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  60. Jurisica, I., Rogers, P., Glasgow, J., Fortier, S., Collins, R., Wolfley, J., Luft, J., DeTitta, G.T.: High throughput macromolecular crystallization: An application of case-based reasoning and data mining. In: Johnson, L., Turk, D. (eds.) Methods in Macromolecular Crystallography, Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  61. Snell, E., Lauricella, A., Potter, S., Luft, J., Gulde, S., Collins, R., Franks, G., Malkowski, M., Cumbaa, C., Jurisica, I., DeTitta, G.T.: Establishing a training set through the visual analysis of crystallization trials Part II: Crystal examples. Acta Crystallographica D (2008)

    Google Scholar 

  62. Snell, E., Luft, J., Potter, S., Lauricella, A., Gulde, S., Malkowski, M., Koszelak-Rosenblum, M., Said, M., Smith, J., Veatch, C., Collins, R., Franks, G., Thayer, M., Cumbaa, C., Jurisica, I., DeTitta, G.T.: Establishing a training set through the visual analysis of crystallization trials Part I: 150,000 images. Acta Crystallographica D (2008)

    Google Scholar 

  63. Cumbaa, C., Jurisica, I.: Automatic classification and pattern discovery in high-throughput protein crystallization trials. J. Struct. Funct. Genomics 6(2-3), 195–202 (2005)

    Article  Google Scholar 

  64. Xia, E., Jurisica, I., Waterhouse, J., Sloan, V.: Runtime estimation using the case-based reasoning approach for scheduling in a grid environment. J. ACM (submitted)

    Google Scholar 

  65. Xia, E., Jurisica, I., Waterhouse, J., Sloan, V.: Runtime estimation using a case-based reasoning system for scheduling in a grid environment. IBM Invention Disclosure (2007)

    Google Scholar 

  66. Pease, A., Chaudhri, V.K., Lehman, F., Farquhar, A.: Practical Knowlege Representation and the DARPA High Performance Knowledge Base Project. In: Seventh International Conference on Principles of Knowledge Representation and Reasoning, Breckenridge, CO (2000)

    Google Scholar 

  67. Friedland, N., Allen, P., Mathews, G., Whitbrock, M., Baxter, D., Curts, J., Shepard, B., Miraglia, P., Angele, J., Staab, S., Moench, E., Opperman, H., Wenke, D., Israel, D., Chaudhri, V., Porter, B., Barker, K., Fan, J., Chaw, S.Y., Yeh, P., Tecuci, D., Clark, P.: Project Halo: Towards a Digital Aristotle. The AI Magazine (2004)

    Google Scholar 

  68. Cohen, P., Chaudhri, V.K., Pease, A., Schrag, B.: Does prior knowledge facilitate the development of knowledge-based systems. In: Proceedings of the AAAI 1999, pp. 221–226 (1999)

    Google Scholar 

  69. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. The Journal of Web Semantics 3(2), 158–182 (2005)

    Article  Google Scholar 

  70. Nebel, B.: Benchmarking of qualitative temporal and spatial reasoning systems. In: AAAI Spring Symposium, AAAI Press, Menlo Park (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaudhri, V.K., Jurisica, I., Koubarakis, M., Plexousakis, D., Topaloglou, T. (2009). The KBMS Project and Beyond. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds) Conceptual Modeling: Foundations and Applications. Lecture Notes in Computer Science, vol 5600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02463-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02463-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02462-7

  • Online ISBN: 978-3-642-02463-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics