Advertisement

Streptomycete Heavy Metal Resistance: Extracellular and Intracellular Mechanisms

  • Erika Kothe
  • Christian Dimkpa
  • Götz Haferburg
  • André Schmidt
  • Astrid Schmidt
  • Eileen Schütze
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 19)

Abstract

The responses of microorganisms to heavy metal stress involve both extracellular and intracellular mechanisms. In contaminated soils, streptomycetes are an important group with a particularly versatile secondary metabolism. The roles of extracellular and intracellular mechanisms for heavy metal retention in growth at contaminated sites were investigated, with emphasis placed on chelator and siderophore excretion, biomineralization, cell wall adsorption, and intracellular storage. The combined result of all of these processes is heavy metal resistance, which was specifically addressed for nickel. Strains withstanding up to 130 mM nickel in minimal media were isolated from a former uranium mining site near Ronneburg in Eastern Thuringia, Germany.

Notes

Acknowledgement

This work was supported by IMPRS (Max-Planck Society), HIGRADE (Helmholtz Association), Gk1257 and JSMC (DFG).

References

  1. Albarracín VH, Winik B, Kothe E, Amoroso MJ, Abate CM (2008) Copper bioaccumulation by the actinobacterium Amycolatopsis sp. AB0. J Basic Microbiol 48:323–330PubMedCrossRefGoogle Scholar
  2. Amoroso M-J, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40:295–301PubMedCrossRefGoogle Scholar
  3. Bäuerlein E (2003) Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Ang Chem 42:614–641CrossRefGoogle Scholar
  4. Collins YE, Stotzky G (1992) Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl Environ Microbiol 58:1592–1600PubMedGoogle Scholar
  5. Crowley DE, Wang YC, Reid CPP, Szanislo PJ (1984) Mechanisms for iron acquisition from siderophores by micro organisms and plants. Plant Soil 130:179–198CrossRefGoogle Scholar
  6. De Giudici G, Podda F, Caredda A, Tombolino R, Casu M, Ricci C (2007) In vitro investigation of hydrozincite biomineralization. Water Rock Interact 12:415–418Google Scholar
  7. Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172PubMedCrossRefGoogle Scholar
  8. Furrer G, Phillips BL, Ulrich K-U, Pöthig R, Casey WH (2002) The origin of aluminium flocs in polluted streams. Science 297:2245–2247PubMedCrossRefGoogle Scholar
  9. Geletneky J, Paul M, Merten D, Büchel G (2002) Impact of acid rock drainage in a discrete catchment area at the former uranium mining site Ronneburg (Germany). In: Nelson JD, Cincilla WA, Foulk CL, Hinshaw LL, Ketellaper V (eds) Tailings and mine waste, Proceedings ninth international conference on trainings and mine waste, Fort Colllings, CO, pp 67–74Google Scholar
  10. Grass G, Grobe C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J Bacteriol 182:1390–1398PubMedCrossRefGoogle Scholar
  11. Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467PubMedCrossRefGoogle Scholar
  12. Haferburg G, Merten D, Büchel G, Kothe E (2007) Biosorption capacity of metal tolerant microbial isolates from a former uranium mining area and their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484PubMedCrossRefGoogle Scholar
  13. Haferburg G, Groth I, Möllmann U, Kothe E, Sattler I (2009) Arousing sleeping genes: Shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress. Biometals 22:225–234PubMedCrossRefGoogle Scholar
  14. Haferburg G, Klöß G, Schmitz W, Kothe E (2008) “Ni-struvite”– a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72:517–523PubMedCrossRefGoogle Scholar
  15. Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40:1–23Google Scholar
  16. Johnson DB, Hallberg K (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14PubMedCrossRefGoogle Scholar
  17. Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions. Chemie Erde 65S1:7–27CrossRefGoogle Scholar
  18. Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698PubMedCrossRefGoogle Scholar
  19. Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71:5532–5543PubMedCrossRefGoogle Scholar
  20. Merten D, Geletneky J, Bergmann H, Haferburg G, Kothe E, Büchel G (2005) Rare earth element patterns: a tool for remediation of acid mine drainage. Chem Erde 65S1:97–114CrossRefGoogle Scholar
  21. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339PubMedCrossRefGoogle Scholar
  22. Park JE, Schlegel HG, Rhie HG, Lee HS (2004) Nucleotide sequence and expression of the ncr nickel and cobalt resistance in Hafnia alvei 5–5. Int Microbiol 7:27–34PubMedGoogle Scholar
  23. Schippers A, Jozsa P-G, Sand W (1996) Sulfur chemistry in bacteria leaching of pyrite. Appl Environ Microbiol 62:3424–3431PubMedGoogle Scholar
  24. Schlegel HG, Cosson JP, Baker JM (1991) Nickel hyperaccumulating plants provide a niche for nickel resistant bacteria. Bot Acta 104:18–25Google Scholar
  25. Schmidt A, Haferburg G, Sineriz M, Schmidt A, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chemie Erde 65S1:131–144CrossRefGoogle Scholar
  26. Schmidt A, Schmidt A, Haferburg G, Kothe E (2007) Superoxide dismutases of heavy metal resistant streptomycetes. J Basic Microbiol 1:56–62CrossRefGoogle Scholar
  27. Schmidt A, Haferburg G, Schmidt A, Merten D, Gherghel F, Büchel G, Kothe E (2009a) Heavy metal resistance to the extreme: Streptomyces strains from a former uranium mining area. Chemie Erde 69S2:35–44CrossRefGoogle Scholar
  28. Schmidt A, Gube M, Schmidt A, Kothe E (2009b) In silico analysis of nickel containing superoxide dismutase evolution and regulation. J Basic Microbiol 49:109–118PubMedCrossRefGoogle Scholar
  29. Sineriz ML, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol DOI:10.1002/jobm200700376Google Scholar
  30. Singer PC, Stumm W (1970) Acid mine drainage: the rate determining step. Science 167:1121–1123PubMedCrossRefGoogle Scholar
  31. Zettler LAA, Messerli MA, Laatsch AD, Smith PJS, Sogin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Rio Tinto. Biol Bull 204:205–209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Erika Kothe
    • 1
  • Christian Dimkpa
    • 1
  • Götz Haferburg
    • 1
  • André Schmidt
    • 1
  • Astrid Schmidt
    • 1
  • Eileen Schütze
    • 1
  1. 1.Institute for MicrobiologyFriedrich-Schiller- University JenaJenaGermany

Personalised recommendations