Hornets: Nets within Nets Combined with Net Algebra

  • Michael Köhler-Bußmeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5606)


In this contribution we propose an algebraic extension of object nets. Object nets, also known as nets within nets, allow nets itself as tokens. The algebraic structure introduced here refers to the topology of these net-tokens, i.e. we have operators which compose nets. Object nets that use net operations in arc expression are called Higher Order Recursive Nets, or short: Hornets.

The operations on nets allow to modify the structure of net-tokens at run-time. We apply this construct to the workflow management domain. We propose a simple Hornet model of a distributed workflow management system. This system consists of a network of workflow management agents. The agents cooperatively transfer workflows over the network for distributed execution, monitor their processes, and reorganise the workflow repository to improve e.g. the system’s performance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Advanced Course on Petri Nets 2003. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Aalst, W.v.d., Moldt, D., Valk, R., Wienberg, F.: Enacting interorganizational workflows using nets in nets. In: Working Paper Series of the Department of Information systems: Proceedings of the 1999 Workflow Management Conference, vol. 70, pp. 117–136. University of Münster (1999)Google Scholar
  3. 3.
    Köhler, M., Rölke, H.: Concurrency for mobile object-net systems. Fundamenta Informaticae 54(2-3) (2003)Google Scholar
  4. 4.
    Köhler, M., Rölke, H.: Properties of Object Petri Nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 278–297. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Köhler, M., Rölke, H.: Reference and value semantics are equivalent for ordinary Object Petri Nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 309–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Köhler, M., Farwer, B.: Modelling global and local name spaces for mobile agents using object nets. Fundamenta Informaticae 72(1-3), 109–122 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri net agents. In: Colom, J.M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 224–241. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets within nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 121–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Rölke, H., Moldt, D.: Pattern based workflow design using reference nets. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 246–260. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Lomazova, I.A., van Hee, K.M., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.: Nested nets for adaptive systems. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 241–260. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M., Lomazova, I.: Checking properties of adaptive workflow nets. Fundamenta Informaticae 79(3-4), 347–362 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Aalst, W.v.d.: Verification of workflow nets. In: Azeme, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Valk, R.: Petri nets as token objects: An introduction to elementary object nets. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Cardelli, L., Gordon, A.D., Ghelli, G.: Mobility types for mobile ambients. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 230–239. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts 1-2. Information and computation 100(1), 1–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Busi, N.: Mobile nets. In: Ciancarini, P., Fantechi, A., Gorrieri, R. (eds.) Formal Methods for Open Object-Based Distributed Systems, vol. 139, pp. 51–66. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
  17. 17.
    Haddad, S., Poitrenaud, D.: Theoretical aspects of recursive Petri nets. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 228–247. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Lomazova, I.A.: Nested Petri nets – a formalism for specification of multi-agent distributed systems. Fundamenta Informaticae 43(1-4), 195–214 (2000)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Xu, D., Deng, Y.: Modeling mobile agent systems with high level Petri nets. In: IEEE International Conference on Systems, Man, and Cybernetics 2000 (2000)Google Scholar
  20. 20.
    Hiraishi, K.: PN2: An elementary model for design and analysis of multi-agent systems. In: Arbab, F., Talcott, C.L. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp. 220–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Bednarczyk, M.A., Bernardinello, L., Pawlowski, W., Pomello, L.: Modelling mobility with Petri hypernets. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 28–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Lakos, C.: A Petri net view of mobility. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 174–188. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 268–288. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Velardo, F.R., de Frutos-Escrig, D.: Name creation vs. replication in petri net systems. Fundam. Inform. 88(3), 329–356 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science 80, 1–34 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ehrig, H., Mahr, B.: Fundamentals of algebraic Specification. EATCS Monographs on TCS. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  27. 27.
    Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual token approaches. Information and Computation 156(1-2), 46–89 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computation 88(2), 105–155 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Köhler, M.: Reachable markings of object Petri nets. Fundamenta Informaticae 79(3-4), 401–413 (2007)MathSciNetGoogle Scholar
  30. 30.
    Köhler, M., Farwer, B.: Object nets for mobility. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 244–262. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATCS Monographs on Theoretical Computer Science Series. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Köhler-Bußmeier
    • 1
  1. 1.University of HamburgDepartment of InformaticsHamburgGermany

Personalised recommendations