Skip to main content

Insect and Nematode Resistance

  • Chapter
  • First Online:
Genetic Modification of Plants

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

Crops are attacked by parasitic pests, including insects and nematodes causing considerable economic losses worldwide. The global yield loss of crops due to herbivorous insects varies between 5% and 30% depending on crop species, while the economic losses due to plant parasitic nematodes are about US $125 billion annually. Today, the control of plant parasites mainly depends on relatively few chemicals that pose serious concerns of risks and hazards for humans, animals and the environment and also increase the costs of growing crops. Use of natural resistance mechanisms offers a promising alternative for parasite control. A set of resistance genes has been identified. Advanced understandings of natural resistance mechanisms in molecular details broaden the horizon of crop resistance breeding programs. Because the resistance resource is limited in many crop species and gene-for-gene reliant resistance is easily overcome by new virulent pathotypes, new genetic variability is needed. Therefore, engineered resistance is becoming an essential part of a sustainable parasite control as it offers a parasite management with benefits to the producer, the consumer and the environment. For engineering resistance , several approaches are under discussion and application. This review focuses on the strategy for engineering parasite resistance in crops by genetic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atkinson HJ, Urwin PE, McPherson MJ (2003) Engineering plants for nematode resistance. Annu Rev Phytopathol 41:615–639

    Article  PubMed  CAS  Google Scholar 

  • Aylife MA, Lagudah ES (2004) Molecular genetics of disease resistance in cereals. Ann Bot 94:765–773

    Article  CAS  Google Scholar 

  • Bakker E, Achenbach U, Bakker J, van Vliet J, Peleman J, Segers B, van der Heijden S, van der Linde P, Graveland R, Hutten R (2004) A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theor Appl Genet 109:146–152

    Article  PubMed  CAS  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62

    Article  PubMed  CAS  Google Scholar 

  • Baum J, Bogaert T, Clinton W, Heck G, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–792

    PubMed  CAS  Google Scholar 

  • Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32:195–204

    Article  PubMed  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  PubMed  CAS  Google Scholar 

  • Böckenhoff A, Grundler FMW (1994) Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitology 109:249–254

    Article  Google Scholar 

  • Boulter D (1993) Insect pest control by copying nature using genetically engineered crops. Phytochemistry 34:1453–1466

    Article  PubMed  CAS  Google Scholar 

  • Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Protect 9:351–354

    Article  Google Scholar 

  • Brioschi D, Nadalini L, Bengston M, Sogayar M, Moura D, Silva-Filho M (2007) General up-regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor. Insect Biochem Mol Biol 37:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Broadway RM (1997) Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. J Invertebr Pathol 43:855–874

    CAS  Google Scholar 

  • Bruderer S, Leitner K (2003) Genetically Modified Crops: molecular and regulatory details. Agency BATS, Switzerland. July 2003. Portable Document Format. Available from Internet: http://www.bats.ch/gmo-watch/GVO-report140703.pdf

  • Burrows PR, De Waele D (1997) Engineering resistance against plant parasitic nematodes using anti-nematode genes. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant--nematode interactions. Kluwer, Dordrecht, pp 217–236

    Chapter  Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Thurau T, Tian YY, Lange T, Yeh KW, Jung C (2003) Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is depending on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51:839–849

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Thurau T, Weng LH, Wegelin T, Tian Y, Grundler FMW, Jung C (2005) An enhanced expression of Hs1 pro- 1 in feeding sites is required for initiation of resistance to the beet cyst nematode (Heterodera schachtii Schmidt). Biol Mol Plant Microbe Interact 4:293–296

    Google Scholar 

  • Carbonero P, Royo J, Diaz I, Garciamaroto F, Gonzalez-Hidalgo E, Gutierrez C, Casanera P (1993) Cereal inhibitors of insect hydrolases (a-amylases and trypsin): genetic control, transgenic expression and insect pests. In: Bruening GJ, Garciolmedo F, Ponz FJ (eds) Workshop on engineering plants against pests and pathogens. Instituto Juan March de Estudios Investigaciones, Madrid, p. 71

    Google Scholar 

  • Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo M, Yafuso C, Schmidt C, Huang C, Rahman M, Olson C, Ellers-Kirk C, Orr B, Marsh S, Antilla L, Dutilleul P, Carrière P (2006) Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci USA 103:7571–7576

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2005) Bacterial insecticidal toxins. Crit Rev Microbiol 30:33–54

    Article  Google Scholar 

  • Chen RG, Zhang LY, Zhang, JH, Zhang W, Wang X, Ouyang B, Li HX, Ye ZB (2006) Functional characterization of Mi, a root-knot nematode resistance gene from tomato (Lycopersicon esculentum L.). J Integr Plant Biol 48:1458–1465

    Article  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host--microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Chitwood DJ (2003) Research on plant–parasitic nematode biology. Pest Manage Sci 59:748–753

    Article  CAS  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR(2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308

    Article  PubMed  CAS  Google Scholar 

  • Clark B, Phillips T, Coats J (2005) Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops. J Agric Food Chem 53:4643–4653

    Article  PubMed  CAS  Google Scholar 

  • Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2009) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/. Accessed 30 Jan 2009

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141

    Article  PubMed  Google Scholar 

  • Davis EL, Hussey RS, Mitchum MG, Baum TJ (2008) Parasitism proteins in nematode--plant interactions. Curr Opin Plant Biol 11:360–366

    Article  PubMed  CAS  Google Scholar 

  • De Majnik J, Ogbonnaya FC, Moullet O, Lagudah ES (2003) The Cre1 and Cre3 nematode resistance genes are located at homoelogous loci in the wheat genome. Mol Plant Microbe Interact 16:1129–1134

    Article  PubMed  Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, Tumlinson JH (1998). Herbivore infested plants selectively attract parasitoids. Nature 393:570–574

    Article  Google Scholar 

  • Dempsey DMA, Silva H, Klessig DF (1998) Engineering disease and pest resistance in plants. Trends Microbiol 6:54–61

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Hu C, Yeh K, Wang P (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

    Article  CAS  Google Scholar 

  • Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486

    Article  PubMed  CAS  Google Scholar 

  • Doyle EA, Lambert KN (2002) Cloning and characterization of an esophageal-gland specific pectate lyase from the root-knot nematode Meloidogyne javanica. Mol Plant Microbe Interact 15:549–556

    Article  PubMed  CAS  Google Scholar 

  • Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse, JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045

    Article  CAS  Google Scholar 

  • Duan X, Li X, Xue Q, Abo-El-Saad M, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14:494–498

    Article  PubMed  CAS  Google Scholar 

  • Ernst K, Kumar A, Kriseleit D, Kloos D-U, Phillips MS, Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31:127–136

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93:5389–5394

    Article  PubMed  CAS  Google Scholar 

  • Ewen S, Pustai A (1999) Effects of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. Lancet 354:1353–1354

    Article  PubMed  CAS  Google Scholar 

  • Farinos GP, de la Poza M, Hernandez-Crespo P, Ortego F, Castanera P (2004) Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol Exp Appl 110:23–30

    Article  Google Scholar 

  • Fritz-Laylin LK, Krishnamurthy N, Tör M, Sjölander KV, Jones JDG (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol138:611–623

    Article  PubMed  CAS  Google Scholar 

  • Frutos R, Rang C, Royer M (1999) Managing resistance to plants producing Bacillus turingiensis toxins. Crit Rev Biotechnol 19:227–276

    Article  CAS  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2001) Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Mol Plant Microbe Interact 14:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse A, Gatehouse J, Dobie P, Kilminster A, Boulter D (1979) Biochemical basis of insect resistance in Vigna unguiculata. J Sci Food Agric 30:948–958

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather C, Hamilton WDO, Burgess EPJ, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trails. Mol Breed 3:49–63

    Article  CAS  Google Scholar 

  • Gema P, Farinos G, de la Poza M, Hernandez-Crespo P, Ortego F, Castanera P (2004) Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol Exp Appl 110:23–30

    Article  Google Scholar 

  • Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JC, McGuire DC (1956) Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial type tomatoes. Proc Am Soc Hortic Sci 63:437–442

    Google Scholar 

  • Giri A, Harsulkar A, Deshpande V, Sainani M, Gupta V, Ranjekar P (1998) Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol 116:393–401

    Article  CAS  Google Scholar 

  • Goggin FL, Jia LL, Shah G, Hebert S, Williamson VM, Ullman DE( 2006) Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Mol Plant Microbe Interact 19:383–388

    Article  PubMed  CAS  Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    Article  PubMed  CAS  Google Scholar 

  • Griffitts J, Haslam S, Yang T, Garczynski S, Mulloy B, Morris H, Cremer P, Dell A, Adang M, Aroian R (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–925

    Article  PubMed  CAS  Google Scholar 

  • Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887

    PubMed  CAS  Google Scholar 

  • Habibi J, Backus EA, Czapla TH (1993) Plant lectins affect survival of the potato leafhopper. J Econ Entomol 86:945–951

    CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163

    Article  CAS  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006a) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2006b) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant Microbe Interact 19:463–470

    Article  PubMed  CAS  Google Scholar 

  • Hussain SS, Makhdoom R, Husnaın T, Saleem T, Riazuddin S (2008) Toxicity of snowdrop lectin protein towards cotton aphids Aphis gossypii (Homoptera, Aphididae) J Cell Mol Biol 7:29–40

    CAS  Google Scholar 

  • James C (2008) Global status of commercialized biotech/GM crops: 2008. (ISAAA brief no. 39) ISAAA, Ithaca, N.Y.

    Google Scholar 

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86:9871–9875

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Takemoto D (2004) Plant innate immunity -- direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48–62

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006). The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kashlan N, Richardson M (1981). The complete amino acid sequence of a major wheat protein inhibitor of α-amylase. Phytochemistry 20:1781–1784

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001): Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Knight P, Crickmore N, Ellar D (1994) The receptor for Bacillus thuringiensis Cry1A(c) deltaendotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11:429–436

    Article  PubMed  CAS  Google Scholar 

  • Knight P, Knowles B, Ellar D (1995) Molecular cloning of an Insect amino peptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem 270:17765–17770

    Article  PubMed  CAS  Google Scholar 

  • Koritsas VM, Atkinson HJ (1994) Proteinases of females of the phytoparasite Globodera pallida (potato cyst nematode). Parasitology 109:357–365

    Article  CAS  Google Scholar 

  • Korth KL (2003) Profiling the response of plants to herbivorous insects. Genome Biol 4:221

    Article  PubMed  Google Scholar 

  • Lee S, Lee SH, Choon K, Jin C, Lim C, Hee M, Han M, Je C (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol Breed 5:1–9

    Article  Google Scholar 

  • Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–64

    Article  PubMed  CAS  Google Scholar 

  • Lilley CJ, Urwin PE, McPherson MJ, Atkinson HJ (1996) Characterisation of intestinally active proteases of cyst-nematodes. Parasitology 113:415–424

    Article  PubMed  CAS  Google Scholar 

  • Lilley CJ, Urwin PE, Atkinson HJ, McPherson MJ (1997) Characterisation of cDNAs encoding serine proteases from the soybean cyst nematode Heterodera glycines. Mol Biochem Parasitol 89:195–207

    Article  PubMed  CAS  Google Scholar 

  • Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ (2004) Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne incognita and Globodera pallida. Plant Biotechnol J 2:3–12

    Article  PubMed  CAS  Google Scholar 

  • Malik K, Mahmood T, Riazuddin S (2001) The receptor for Bacillus thuringiensis Cry 1Ac delta-endotoxin in the brush border membrane of the lepidopteran Helicoverpa armigera is aminopeptidase N. Online J Biol Sci 1:782–784

    Article  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93

    Article  CAS  Google Scholar 

  • Martinez de Ilarduya O, Kaloshian I (2001) Mi-1.2 transcripts accumulate ubiquitously in root-knot nematode resistant Lycopersicon esculentum. J Nematol 33:116–120

    CAS  Google Scholar 

  • Martinez de Ilarduya O, Nombela G, Hwang CF, Williamson VM, Muñiz M, Kaloshian I (2004) Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway. Mol Plant Microbe Interact 17:55–61

    Article  PubMed  Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477

    Article  PubMed  CAS  Google Scholar 

  • McCarter JP (2008) Molecular approaches toward resistance to plant-parasitic nematodes. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Plant cell monographs, vol 15. Springer, Heidelberg, pp 239–268

    Chapter  Google Scholar 

  • McGaughey W, Whalon M (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258:1451–1455

    Article  PubMed  CAS  Google Scholar 

  • McLean MD, Hoover GJ, Bancroft B, Makhmoudova A, Clark SM, Welacky T, Simmonds DH, Shelp BJ (2007) Identification of the full-length Hs1pro-1 coding sequence and preliminary evaluation of soybean cyst nematode resistance in soybean transformed with Hs1pro-1 cDNA. Can J Bot 85:437–441

    Article  CAS  Google Scholar 

  • Meksem KP, Pantazopoulos VN, Njiti LD, Hyten PR, Arelli DA (2001) Light foot forrest resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet 103:710–717

    Article  CAS  Google Scholar 

  • Melander M, Ahman I, Kamnert I, Strömdahl A (2003) Pea lectin expressed transgenically in oilseed rape reduces growth rate of pollen beetle larvae. Transgenic Res 12:555–567

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW (2003) The impact zone: genomics and breeding for durable disease resistance. Curr Opin Plant Biol 6:397–404

    Article  PubMed  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    PubMed  CAS  Google Scholar 

  • Moreno J, Chrispeels MJ (1989) A lectin gene encodes the a-amylase inhibitor of the common bean. Proc Natl Acad Sci USA 86:7885–7889

    Article  PubMed  CAS  Google Scholar 

  • Morton R, Schroeder H, Bateman K, Chrispeels M, Armstrong E, Higgins T (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825

    Article  PubMed  CAS  Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Sarma NP, Reddy VD (2004) Transgenic rice plants expressing the snowdrop lectin gene (GNA) exhibit high-level resistance to the white backed planthopper (Sogatella furcifera). Theor Appl Genet 109:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16:645–649

    Article  PubMed  CAS  Google Scholar 

  • Octavio L, Rigden D (2000) Activity of wheat alpha-amylase inhibitors towards bruchid alpha-amylase and structural explanation of observed specificities. Eur J Biochem 267:2166–2173

    Article  Google Scholar 

  • Octavio L, Rigden D (2002) Plant alpha-amylase inhibitors and their interaction with alpha-amylases. Eur J Biochem 269:397–412

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oneda H, Lee S, Inouye K (2004) Inhibitory effect of 19 alpha-amylase inhibitor from wheat kernel on the activity of porcine pancreas alpha-amylase and its stability. J Biochem 135:421–427

    Article  PubMed  CAS  Google Scholar 

  • Paal J, Henselewski H, Muth J, Meksem K, Menendez CM, Salamini F, Ballvora A, Gebhardt C. (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root nematode Globodera rostochiensis, based on a candidate gene approach. Plant J 38:285–297

    Article  PubMed  CAS  Google Scholar 

  • Pereira R, Batista J, Silva M, Neto O, Figueira E, Jiménez A, Grossi-de-Sa A (2006) An α-amylase inhibitor gene from Phaseolus coccineus encodes a protein with potential for control of coffee berry borer (Hypothenemus hampei). Phytochemistry 67:2009–2016

    Article  CAS  Google Scholar 

  • Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:93–400

    Article  CAS  Google Scholar 

  • Qin L, Kudla U, Roze EHA, Goverse A, Popeijus H, Nieuwland J, Overmars H, Jones JT, Schots O, Smant G, Bakker J, Helder J (2004) A nematode expansin acting on plants. Nature 427:30

    Article  PubMed  CAS  Google Scholar 

  • Ranjekar P, Patanka A, Gupta V, Bhatnaga R, Bentur J, Kumar P (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 48:321–329

    Google Scholar 

  • Rao K, Rathore K, Hodges T, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bown D, Powell K, Richardson M (1991) Seed storage proteins: the enzyme inhibitors. In: Rogers LJ (ed) Amino acids, proteins and nucleic acids. (Methods in plant biochemistry, vol 5) Academic, London, pp 259–305

    Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi, M, Bown DP, Powell K, Spence J, Gatehouse AMR, Gatehouse J (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  PubMed  CAS  Google Scholar 

  • Rouppe van der Voort J, Kanyuka K, van der Vossen E, Bendahmane A, Mooijman P, Klein-Lankhorst R, Stiekema W, Baulcombe D, Bakker J (1999) Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species Solanum tuberosum subsp. andigena CPC 1673 into cultivated potato. Mol Plant Microbe Interact 12:197–206

    Article  CAS  Google Scholar 

  • Ruben EA, Jamai J, Afzal VN, Njiti K, Triwitayakorn MJ, Iqbal S, Yaegashi R, Bashir S, Kazi P, Arelli CD, Town H, Ishihara K, Meksem DA, Lightfoot A (2006) Genomic analysis of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Mol Gen Genomics 276:503–516

    Article  CAS  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: gene for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–429

    Article  CAS  Google Scholar 

  • Schroeder S, Gollasch S, Moore A, Tabe L, Craig S, Hardie D, Chrispeels M, Spencer D, Higgins T (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum). Plant Physiol 107:1233–1239

    PubMed  CAS  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    Article  CAS  Google Scholar 

  • Schulte D, Cai D, Kleine M, Fan L, Wang S, Jung C (2006) A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Mol Gen Genomics 275:504–511

    Article  CAS  Google Scholar 

  • Soberón M, Pardo-López L, López I, Gómez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642

    Article  PubMed  CAS  Google Scholar 

  • Sobczak M, Avrova A, Jupowicz J, Phillips MS, Ernst K, Kumar A (2005) Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol Plant Microbe Interact 18:158–168

    Article  PubMed  CAS  Google Scholar 

  • Spence J, Bharathi M, Gatehouse A, Gatehouse J (1998) Expression of snowdrop lectin (GNA) in the phloem of transgenic rice plants confers resistance to rice brown planthopper. Plant J 14:469–477

    Google Scholar 

  • Starr JL, Bridge J, Cook R (2002) Resistance to plant-parasitic nematodes: history, current use and future potential. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CAB International, Oxford, pp 1–22

    Chapter  Google Scholar 

  • Steele AE (1965) The host range of the sugarbeet nematode. Heterodera schachtii Schmidt. J Am Soc Sugar Beet Technol 13:573–603

    Article  Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    Article  CAS  Google Scholar 

  • Stuiver MH, Custers JHHV (2001) Engineering disease resistance in plants. Nature 411:865–868

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Dennehy TJ, Carriere Y (2005) Delayed resistance to transgenic cotton in pink bollworm. Proc Natl Acad Sci USA 102:15389–15393

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowdwder DW, Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    Article  PubMed  CAS  Google Scholar 

  • Thurau T, Kifle S, Jung C, Cai D (2003) The promoter of the nematode resistance gene Hs1 pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol Biol 52:643–660

    Article  PubMed  CAS  Google Scholar 

  • Titarenko E, Chrispeels M (2000) cDNA cloning, biochemical characterisation and inhibition by plant inhibititors of the α-amylases of the western corn rootworm Diabrotica virgifera virgifera. Insect Biochem Mol Biol 30:979–990

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402

    Article  PubMed  CAS  Google Scholar 

  • Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Resistance to both cyst- and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12:455–461

    Article  PubMed  CAS  Google Scholar 

  • Urwin PE, McPherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204:472–479

    Article  PubMed  CAS  Google Scholar 

  • Urwin PE, Levesley A, McPherson MJ, Atkinson HJ (2000) Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Mol Breed 6:257–264

    Article  CAS  Google Scholar 

  • Urwin PE, Troth KM, Zubko EI, Atkinson HJ (2001) Effective transgenic resistance to Globodera pallida in potato field trials. Mol Breed 8:95–101

    Article  CAS  Google Scholar 

  • Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J, Christou P, Atkinson H. (1998) Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-IΔD86) for nematode resistance intransgenic rice plants. Theor Appl Genet 96:266–271

    Article  CAS  Google Scholar 

  • Valentine TA, Randall E, Wypijewski K, Chapman S, Jones J, Oparka KJ (2007) Delivery of macromolecules to plant parasitic nematodes using a tobacco rattle virus vector. Plant Biotechnol J 5:827–834

    Article  PubMed  CAS  Google Scholar 

  • van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:226–227

    Article  Google Scholar 

  • van der Hoorn, Renier AL, Kamounb S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  PubMed  CAS  Google Scholar 

  • van der Vossen EAG, van der Voort J, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576

    Article  PubMed  Google Scholar 

  • Voelckel C, Baldwin IT (2004a): Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecol Lett 7:770–775

    Article  Google Scholar 

  • Voelckel C, Baldwin IT (2004b): Herbivore-specific transcriptional responses and their research potential for ecologists. Insects Ecosyst Funct 173:357–379

    Article  Google Scholar 

  • Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454

    Article  PubMed  CAS  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Arion RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100:2760–2765

    Article  PubMed  CAS  Google Scholar 

  • Williamson VM (1998) Root-knot nematode resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36:277–293

    Article  PubMed  CAS  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403

    Article  PubMed  CAS  Google Scholar 

  • Wolfson JL, Murdock LL (1990) Diversity in digestive proteinase activity among insects. J Chem Ecol 16:1089–1102

    Article  CAS  Google Scholar 

  • Wu J, Luo XL, Wang Z, Tian YC, Liang A, Sun Y (2008) Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae. Biotechnol Lett 30:547–554

    Article  PubMed  CAS  Google Scholar 

  • Yao PL, Hwang MJ, Chen YM, Yeh KW (2001) Site directed mutagenesis evidence for a negatively charged trypsin inhibitory loop in sweet potato sporamin. FEBS Lett 496:134–138

    Article  PubMed  CAS  Google Scholar 

  • Yavad BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  Google Scholar 

  • Yeh KW, Lin ML, Tuan SJ, Chen YM, Lin CY, Kao SS (1997). Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Rep 16:696–699

    Article  CAS  Google Scholar 

  • Yencho G, Cohen M, Byrne P (2000) Application of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45:393–422

    Article  PubMed  CAS  Google Scholar 

  • Zhang CL, Xu DC, Jiang XC, Zhou Y, Cui J, Zhang CX, Chen DF, Fowler MR, Elliott MC, Scott NW, Dewar AM, Slater A (2008) Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Ann Appl Biol 152:143–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Thurau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thurau, T., Ye, W., Cai, D. (2010). Insect and Nematode Resistance. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_10

Download citation

Publish with us

Policies and ethics