Skip to main content

Stochastic Delay-Differential Equations

  • Chapter
  • First Online:
Complex Time-Delay Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This chapter concerns the effect of noise on linear and nonlinear delay-differential equations. Currently there exists no formalism to exactly compute the effects of noise in nonlinear systems with delays. The standard Fokker–Planck approach is not justified because it is meant for Markovian systems. Delay-differential systems are non-Markovian, although various approximations to them might be Markovian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. M. Atay, and A. Hutt. Neural fields with distributed transmission speeds and long-range feedback delays. SIAM J. Appl. Dynam. Syst., 5: 670–698, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. R. Bell, and S.-E. A. Mohammed. Smooth densities for degenerate stochastic delay equations with hereditary drift. Ann. Prob., 23: 1875–1894, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Brunel, and V. Hakim. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comp., 11: 1621–1671, 1999.

    Article  Google Scholar 

  4. E. Buckwar, A. Pikovsky, and M. Scheutzow. Stochastic dynamics with delay and memory. Stochastics and Dynamics, 5(2) Special Issue, June 2005.

    Google Scholar 

  5. J. L. Cabrera, and J. G. Milton. On-off intermittency in a human balancing task. Phys. Rev. Lett., 89: 157802, 2002.

    Article  Google Scholar 

  6. Y. Chen, M. Ding, and J. A. S. Kelso. Long memory processes (1/fa type) in human coordination. Phys. Rev. Lett., 79: 4501–4504, 1997.

    Article  Google Scholar 

  7. J. Foss, A. Longtin, B. Mensour, and J. G. Milton. Multistability and delayed recurrent loops. Phys. Rev. Lett., 76: 708–711, 1996.

    Article  Google Scholar 

  8. T. D. Frank, and P. J. Beek. Stationary solutions of linear stochastic delay differential equations: Application to biological systems. Phys. Rev. E., 64: 021917, 2001.

    Article  Google Scholar 

  9. T. D. Frank, P. J. Beek, and R. Friedrich. Fokker-Planck perspective on stochastic delay systems: Exact solutions and data analysis of biological systems. Phys. Rev. E, 68: 021912, 2003.

    Article  Google Scholar 

  10. T. D. Frank. Delay Fokker-Planck equations, perturbation theory, and data analysis for nonlinear stochastic systems with time delays. Phys. Rev. E, 71: 031106, 2005.

    Article  Google Scholar 

  11. W. Gerstner, and W. Kistler. Spiking Neuron Models. Cambridge, Cambridge University Press 1999.

    Google Scholar 

  12. S. Guillouzic, I. L’Heureux, and A. Longtin. Small delay approximation of stochastic delay differential equations. Phys. Rev. E, 59: 3970–3982, 1999.

    Article  Google Scholar 

  13. S. Guillouzic, I. L’Heureux, and A. Longtin. Rate processes in a delayed, stochastically driven, and overdamped system. Phys. Rev. E, 61: 4906–4914, 2000.

    Article  Google Scholar 

  14. A. Holden. Models of the Stochastic Activity of Neurons. Lecture Notes in Biomathematics. Springer, Berlin 1976.

    Google Scholar 

  15. D. Huber, and L. S. Tsimring. Dynamics of an ensemble of noisy bistable elements with global time delayed coupling. Phys. Rev. Lett., 91: 260601, 2005.

    Article  Google Scholar 

  16. H. C. Haken. Advanced Synergetics. Springer, Berlin 1983.

    MATH  Google Scholar 

  17. Janson, N.B. Balanov, A.G. Schöll E.: Delayed feedback as a means of control of noise-induced motion. Phys. Rev. Lett., 93: 010601, 2004.

    Article  Google Scholar 

  18. B. W. Knight, A. Omurtag, and L. Sirovich. The approach of a neuron population firing rate to a new equilibrium: An exact theoretical result. Neural Comput., 12: 1045–1055, 2000.

    Article  Google Scholar 

  19. U. Küchler, and B. Mensch. Langevins stochastic differential equation extended by a time-delayed term. Stoch. Stoch. Rep., 40: 23–42, 1992.

    MATH  Google Scholar 

  20. S. Kim, S. H. Park, and H.-B. Pyo. Stochastic resonance in coupled oscillator systems with time delay. Phys. Rev. Lett., 82: 1620–1623, 1999.

    Article  Google Scholar 

  21. M. Klosek, and R. Kuske. Multi-scale analysis for stochastic differential delay equations, SIAM Multiscale Model. Simul., 3: 706–729, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. LeBerre, E. Ressayre, A. Tallet, and Y. Pomeau. Dynamic system driven by a retarded force acting as colored noise. Phys. Rev. A., 41: 6635–6646, 1990.

    Article  MathSciNet  Google Scholar 

  23. B. Lindner, L. Schimansky-Geier, and A. Longtin. Maximizing spike train coherence and incoherence in the leaky integrate-and-fire model. Phys. Rev. E, 66: 031916, 2002.

    Article  MathSciNet  Google Scholar 

  24. B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier. Effects of noise in excitable systems. Phys. Rep., 392: 321–424, 2004.

    Article  Google Scholar 

  25. B. Lindner, B. Doiron, and A. Longtin. Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E., 72: 061919, 2005.

    Article  MathSciNet  Google Scholar 

  26. A. Longtin. Noise-induced transitions at a Hopf bifurcation in a first order delay-differential equation. Phys. Rev. A, 44: 4801–4813, 1991.

    Article  Google Scholar 

  27. A. Longtin, J. G. Milton, J. E. Bos, and M. C. Mackey. Noise-induced transitions in the human pupil light reflex, Phys. Rev. A, 41: 6992–7005, 1990.

    Article  Google Scholar 

  28. M. C. Mackey, and I. G. Nechaeva. Solution moment stability in stochastic differential delay equations. Phys. Rev. E, 52: 3366–3376, 1995.

    Article  MathSciNet  Google Scholar 

  29. X. Mao. Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations. SIAM J. Math. Anal., 28: 389–401, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Mattia, and P. Del Giudice. Population dynamics of interacting spiking neurons. Phys. Rev. E, 66: 051917, 2002.

    Article  MathSciNet  Google Scholar 

  31. R. Morse, and A. Longtin. Coherence and stochastic resonance in threshold crossing detectors with delayed feedback. Phys. Lett. A, 359: 640–646, 2006.

    Article  MATH  Google Scholar 

  32. D. Nykamp, and D. Tranchina. A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. J. Comput. Neurosci., 8: 19–50, 2000.

    Article  MATH  Google Scholar 

  33. T. Ohira, and J. G. Milton. Delayed random walks. Phys. Rev. E., 52: 3277–3280, 1995.

    Article  Google Scholar 

  34. T. Ohira. Oscillatory correlation of delayed random walks. Phys. Rev. E, 55: 1255–1258, 1997.

    Article  Google Scholar 

  35. T. Ohira, and Y. Sato. Resonance with noise and delay. Phys. Rev. Lett., 82: 2811–2815, 1999.

    Article  Google Scholar 

  36. A. Pikovsky, and L. S. Tsimring. Noise-induced dynamics in bistable systems with delay. Phys. Rev. Lett., 87: 250602, 2001.

    Article  Google Scholar 

  37. O.V. Popovych, C. Hauptmann, and P.A. Tass. Effective desynchronization by nonlinear delayed feedback. Phys. Rev. Lett., 94: 164102, 2005.

    Article  Google Scholar 

  38. T. Prager, and L. Schimansky-Geier. Stochastic resonance in a non-markovian discrete state model for excitable systems. Phys. Rev. Lett., 91: 230601, 2003.

    Article  Google Scholar 

  39. B. Redmond, V. LeBlanc, and A. Longtin. Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry. Physica D, 166: 131–146, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Richardson, and W. Gerstner. Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput., 17: 923–947, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Swain, and A. Longtin. Noise in neural and genetic networks. Chaos, 16: 026101, 2006.

    Article  MathSciNet  Google Scholar 

  42. S. Trimper, and K. Zabrocki. Memory driven pattern formation. Phys. Lett. A, 331: 423–431, 2004.

    Article  MATH  Google Scholar 

  43. H. C. Tuckwell. Stochastic processes in the neurosciences. CBMS-NSF Regional Conference Series in Applied Mathematics Vol. 56. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1989.

    Google Scholar 

  44. K. Vasilikos, and A. Beuter. Effects of noise on a delayed visual feedback system. J. theor. Biol., 165: 389–407, 1993.

    Article  Google Scholar 

  45. E. M. Wright. A nonlinear difference-differential equation. J. Reine Angew. Math., 194: 66–87, 1955.

    MATH  MathSciNet  Google Scholar 

  46. M. K. S. Yeung, and S. H. Strogatz. Time delay in the kuramoto model of coupled oscillators. Phys. Rev. Lett., 82: 648–651, 1999.

    Article  Google Scholar 

  47. K. Zabrocki, S. Tatur, S. Trimper, and R. Mahnke. Relationship between a non-Markovian process and Fokker-Planck equation. Phys. Lett. A, 359: 349–356, 2006.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Longtin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Longtin, A. (2009). Stochastic Delay-Differential Equations. In: Atay, F. (eds) Complex Time-Delay Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02329-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02329-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02328-6

  • Online ISBN: 978-3-642-02329-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics