Advertisement

A Labelled Graph Based Multiple Classifier System

  • Wan-Jui Lee
  • Robert P. W. Duin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5519)

Abstract

In general, classifying graphs with labelled nodes (also known as labelled graphs) is a more difficult task than classifying graphs with unlabelled nodes. In this work, we decompose the labelled graphs into unlabelled subgraphs with respect to the labels, and describe these decomposed subgraphs with the travelling matrices. By utilizing the travelling matrices to calculate the dissimilarity for all pairs of subgraphs with the JoEig approach [6], we can build a base classifier in the dissimilarity space for each label. By combining these label base classifiers with the global structure base classifiers built on dissimilarities of graphs considering the full adjacency matrices and the full travelling matrices, respectively, we can solve the labelled graph classification problem with the multiple classifier system.

Keywords

Adjacency Matrix Global Structure Label Graph Statistical Pattern Recognition Graph Edit Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bunke, H., Irniger, C., Neuhaus, M.: Graph Matching - Challenges and Potential Solutions. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bunke, H., Riesen, K.: Graph Classification Based on Dissimilarity Space Embedding. In: da Vitoria, L., et al. (eds.) Proc. SSSPR 2008, Structural, Syntacic, and Statistical Pattern Recognition, Florida, USA. LNCS, vol. 5342, pp. 996–1007. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Duin, R.P.W., Juszczak, P., Paclik, P., Pȩkalska, E., de Ridder, D., Tax, D.M.J.: PRTOOLS4, A Matlab Toolbox for Pattern Recognition, The Netherlands, Delft University of Technology. ICT Group (2004), http://www.prtools.org
  5. 5.
    Kuncheva, L.I.: Combining Pattern Classifiers. Methods and Algorithms. Wiley, Chichester (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Lee, W.J., Duin, R.P.W.: An Inexact Graph Comparison Approach in Joint Eigenspace. In: Proc. SSSPR 2008, Structural, Syntacic, and Statistical Pattern Recognition, Florida, USA. LNCS, vol. 5342, pp. 35–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Neuhaus, M., Bunke, H.: Edit Distance-Based Kernel Functions for Structural Pattern Classification. Pattern Recognition 39, 1852–1863 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Pȩkalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. In: Fundations and Applications. World Scientific, Singapore (2005)Google Scholar
  9. 9.
    Qiu, H.J., Hancock, E.R.: Spectral Simplication of Graphs. In: Proceedings of the 8th European Conference on Computer Vision, Czech Republic, pp. 114–126 (2004)Google Scholar
  10. 10.
    Riesen, K., Bunke, H.: Classifier Ensembles for Vector Space Embedding of Graphs. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 220–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In: da Vitoria, L., et al. (eds.) Proc. SSSPR 2008, Structural, Syntacic, and Statistical Pattern Recognition, Florida, USA. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Schenker, A., Bunke, H., Last, M., Kandel, A.: Building Graph-Based Classifier Ensembles by Random Node Selection. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 214–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wan-Jui Lee
    • 1
  • Robert P. W. Duin
    • 1
  1. 1.Faculty of Electrical Engineering, Mathematics and Computer SciencesDelft University of TechnologyThe Netherlands

Personalised recommendations