Skip to main content

Myotonische Erkrankungen und Ionenkanalkrankheiten

  • Chapter
Pathologie
  • 5378 Accesses

Zusammenfassung

Die myotonischen Erkrankungen bestehen aus einer Gruppe von heterogenen, zumeist erblichen Krankheiten, denen das Symptom Myotonie gemeinsam ist. Einige davon werden jetzt den Ionenkanalkrankheiten zugerechnet, nämlich die dominant und die rezessiv erbliche Myotonia congenita, die Paramyotonia congenita und die hyper-, und die hypokaliämischen periodischen Paralysen, wobei letztere auch myotone Symptome aufweisen können. Demgegenüber beruht die myotonische Dystrophie auf einem Defekt der Myotoninproteinkinase, nicht aber primär auf einer Ionenkanalstörung. Davon abzugrenzen sind die lebensgefährlichen malignen Hyperthermien, die den Ionenkanalkrankheiten nur teilweise oder indirekt zugeordnet werden können und nicht mit myotonen Symptomen verbunden sind. Unter den Ionenkanalkrankheiten sind jeweils die Chlorid-, Natrium-,

Calcium- und Kaliumkanalkrankheiten zu differenzieren und von den verschiedenen Formen von malignen Hyperthermien und schließlich auch vom malignen neuroleptischen Syndrom abzugrenzen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Araki M, Takagi A, Higuchi I, Sugita H (1988) Neuroleptic malignant syndrome: caffeine contracture of single muscle fibers and muscle pathology [see comments]. Neurology 38: 297–301

    PubMed  CAS  Google Scholar 

  2. Bergman RA, Afifi AK, Dunkle LM, Johns RJ (1970) Muscle pathology in hypokalemic periodic paralysis with hyperthyroidism. I. High resolution light microscopic study of a case. Johns Hopkins Med J 126: 88–99

    CAS  Google Scholar 

  3. Betz RC, Schoser BG, Kasper D et al. (2001) Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nat Genet 28: 218–219

    Article  PubMed  CAS  Google Scholar 

  4. Borenstein S, Noel P, Jacquy J, Flamentdurand J (1977) Myotonic dystrophy with nerve hypertrophy. Report of a case with electrophysiological and ultrastructural study of the sural nerve. J Neurol Sci 34: 87–99

    Article  PubMed  CAS  Google Scholar 

  5. Burgunder JM, Huifang S, Beguin P et al. (2008) Novel chloride channel mutations leading to mild myotonia among Chinese. Neuromuscul Disord 18: 633–640

    Article  PubMed  Google Scholar 

  6. Cao A, Cianchetti C, Calisti L, de Virgiliis S, Ferreli A, Tangheroni W (1978) Schwartz-Jampel syndrome. Clinical, electrophysiological and histopathological study of a severe variant. J Neurol Sci 35: 175–187

    Article  PubMed  CAS  Google Scholar 

  7. Day JW, Roelofs R, Leroy B, Pech I, Benzow K, Ranum LP (1999) Clinical and genetic characteristics of a five-generation family with a novel form of myotonic dystrophy (DM2). Neuromuscul Disord 9: 19–27

    Article  PubMed  CAS  Google Scholar 

  8. Denborough MA, Dennett X, Anderson RM (1973) Central-core disease and malignant hyperpyrexia. Br Med J 1: 272–273

    Article  PubMed  CAS  Google Scholar 

  9. Denborough MA, Lowell RRH (1960) Anesthetic death in a family. Lancet II: 45

    Article  Google Scholar 

  10. Dieler R, Schröder JM (1990) Lacunar dilatations of intrafusal and extrafusal terminal cisternae, annulate lamellae, confronting cisternae and tubulofilamentous inclusions within the spectrum of muscle and nerve fiber changes in myotonic dystrophy. Pathol Res Pract 186: 371–382

    Article  PubMed  CAS  Google Scholar 

  11. Ebers GC, George AL, Barchi RL et al. (1991) Paramyotonia congenita and hyperkalemic periodic paralysis are linked to the adult muscle sodium channel gene. Ann Neurol 30: 810–816

    Article  PubMed  CAS  Google Scholar 

  12. Eng GD, Epstein BS, Engel WK, McKay DW, McKay R (1978) Malignant hyperthermia and central core disease in a child with congenital dislocating hips. Arch Neurol 35: 189–197

    PubMed  CAS  Google Scholar 

  13. Engel AG (1970) Evolution and content of vacuoles in primary hypokalemic periodic paralysis. Mayo Clin Proc 45: 774–814

    PubMed  CAS  Google Scholar 

  14. Eriksson M, Ansved T, Edstrom L, Anvret M, Carey N (1999) Simultaneous analysis of expression of the three myotonic dystrophy locus genes in adult skeletal muscle samples: the CTG expansion correlates inversely with DMPK and 59 expression levels, but not DMAHP levels. Hum Mol Genet 8: 1053–1060

    Article  PubMed  CAS  Google Scholar 

  15. Fu YH, Pizzuti A, Fenwick RG Jr et al. (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255: 1256–1258

    Article  PubMed  CAS  Google Scholar 

  16. Harley HG, Brook JD, Rundle SA et al. (1992) Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy [see comments]. Nature 355: 545–546

    Article  PubMed  CAS  Google Scholar 

  17. Heene R (1973) Histological and histochemical findings in muscle spindles in dystrophia myotonica. J Neurol Sci 18: 369–372

    Article  PubMed  CAS  Google Scholar 

  18. Iaizzo PA, Franke C, Hatt H, Spittelmeister W, Ricker K, Rudel R, Lehmann-Horn F (1991) Altered sodium channel behaviour causes myotonia in dominantly inherited myotonia congenita. Neuromuscul Disord 1: 47–53

    Article  PubMed  CAS  Google Scholar 

  19. Kakourou G, Dhanjal S, Mamas T et al. (2008) Preimplantation genetic diagnosis for myotonic dystrophy type 1 in the UK. Neuromuscul Disord 18: 131–136

    Article  PubMed  Google Scholar 

  20. Koch MC, Steinmeyer K, Lorenz C et al. (1992) The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257: 797–800

    Article  PubMed  CAS  Google Scholar 

  21. Kress W, Mueller-Myhsok B, Ricker K et al. (2000) Proof of genetic heterogeneity in the proximal myotonic myopathy syndrome (PROMM) and its relationship to myotonic dystrophy type 2 (DM2) [In Process Citation]. Neuromuscul Disord 10: 478–480

    Article  PubMed  CAS  Google Scholar 

  22. Kubisch C, Schoser BG, von During M et al. (2003) Homozygous mutations in caveolin-3 cause a severe form of rippling muscle disease. Ann Neurol 53: 512–520

    Article  PubMed  CAS  Google Scholar 

  23. Kuhn E (1976) Myotonia. Dtsch Med Wochenschr 101: 1362–1364

    Article  PubMed  CAS  Google Scholar 

  24. Liquori CL, Ricker K, Moseley ML et al. (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293: 864–867

    Article  PubMed  CAS  Google Scholar 

  25. Luan X, Chen B, Liu Y, Zheng R, Zhang W, Yuan Y (2009) Tubular aggregates in paralysis periodica paramyotonica with T704M mutation of SCN4A. Neuropathology 29: 579–584

    Article  PubMed  Google Scholar 

  26. Machuca-Tzili L, Brook D, Hilton-Jones D (2005) Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve 32: 1–18

    Article  PubMed  CAS  Google Scholar 

  27. Maynard JA, Cooper RR, Ionaescu VV (1977) An ultrastructure investigation of intrafusal muscle fibers in myotonic dystrophy. Virchows Arch A Pathol Pathol Anat 373: 1–13

    Article  PubMed  CAS  Google Scholar 

  28. Monnier N, Ferreiro A, Marty I, Labarre-Vila A, Mezin P, Lunardi J (2003) A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet 12: 1171–1178

    Article  PubMed  CAS  Google Scholar 

  29. Monnier N, Procaccio V, Stieglitz P, Lunardi J (1997) Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle [see comments]. Am J Hum Genet 60: 1316–1325

    Article  PubMed  CAS  Google Scholar 

  30. Müller HD, Vielhaber S, Brunn A, Schröder JM (2001) Dominantly inherited myopathy with novel tubular aggregates containing 1-21 tubulofilamentous structures. Acta Neuropathol (Berl) 102: 27–35

    Google Scholar 

  31. Nicole S, Ben Hamida C, Beighton P et al. (1995) Localization of the Schwartz-Jampel syndrome (SJS) locus to chromosome 1p34-p36.1 by homozygosity mapping. Hum Mol Genet 4: 1633–1636

    Article  PubMed  CAS  Google Scholar 

  32. Nicole S, Davoine CS, Topaloglu H et al. (2000) Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet 26: 480–483

    Article  PubMed  CAS  Google Scholar 

  33. Pavone L, Mollica F, Grasso A, Cao A, Gullotta F (1978) Schwartz-Jampel syndrome in two daughters of first cousins. J Neurol Neurosurg Psychiatry 41: 161–169

    Article  PubMed  CAS  Google Scholar 

  34. Pollock M, Dyck PJ (1976) Peripheral nerve morphometry in myotonic dystrophy. Arch Neurol 33: 33–39

    PubMed  CAS  Google Scholar 

  35. Ptacek LJ, Gouw L, Kwiecinski H et al. (1993) Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis. Ann Neurol 33: 300–307

    Article  PubMed  CAS  Google Scholar 

  36. Ptacek LJ, Trimmer JS, Agnew WS, Roberts JW, Petajan JH, Leppert M (1991) Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium-channel gene locus. Am J Hum Genet 49: 851–854

    PubMed  CAS  Google Scholar 

  37. Puwanant A, Ruff RL (2010) INa and IKir are reduced in Type 1 hypokalemic and thyrotoxic periodic paralysis. Muscle Nerve 42: 315–327

    Article  PubMed  CAS  Google Scholar 

  38. Raheem O, Huovinen S, Suominen T, Haapasalo H, Udd B (2010) Novel myosin heavy chain immunohistochemical double staining developed for the routine diagnostic separation of I, IIA and IIX fibers. Acta Neuropathol 119: 495–500

    Article  PubMed  CAS  Google Scholar 

  39. Resnick JS, Dorman JD, Engel WK (1969) Thyrotoxic periodic paralysis. Am J Med 47: 831–836

    Article  PubMed  CAS  Google Scholar 

  40. Robinson RL, Monnier N, Wolz W et al. (1997) A genome wide search for susceptibility loci in three European malignant hyperthermia pedigrees. Hum Mol Genet 6: 953–961

    Article  PubMed  CAS  Google Scholar 

  41. Rosman NP, Rebeiz JJ (1967) The cerebral defect and myopathy in myotonic dystrophy. A comparative clinicopathological study. Neurology 17: 1106–1112

    PubMed  CAS  Google Scholar 

  42. Rüdel R, Hanna MG, Lehmann-Horn F (1999) Muscle channelopathies: malignant hyperthermia, periodic paralyses, paramyotonia, and myotonia. In: Schapira AHV, Griggs RC (eds) Blue Books of Practical Neurology: Muscle Diseases 24: 135–175

    Google Scholar 

  43. Rueffert H, Wehner M, Ogunlade V, Meinecke C, Schober R (2009) Mild clinical and histopathological features in patients who carry the frequent and causative malignant hyperthermia RyR1 mutation p.Thr2206Met. Clin Neuropathol 28: 409–416

    PubMed  CAS  Google Scholar 

  44. Schmalbruch H (1979) A freeze-fracture study of the plasma membrane of muscle fibres of a patient with chronic creatine kinase elevation suspected for malignant hyperthermia. J Neuropathol Exp Neurol 38: 407–418

    Article  PubMed  CAS  Google Scholar 

  45. Schoser BG, Schneider-Gold C, Kress W et al. (2004) Muscle pathology in 57 patients with myotonic dystrophy type 2. Muscle Nerve 29: 275–281

    Article  PubMed  Google Scholar 

  46. Schoser BG, Schroder JM, Grimm T, Sternberg D, Kress W (2007) A large German kindred with cold-aggravated myotonia and a heterozygous A1481D mutation in the SCN4A gene. Muscle Nerve 35: 599–606

    Article  PubMed  CAS  Google Scholar 

  47. Schröder JM (1982) Pathologie der Muskulatur. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  48. Schröder JM, Adams RD (1968) The ultrastructural morphology of the muscle fiber in myotonic dystrophy. Acta Neuropathol (Berl) 10: 218–241

    Article  Google Scholar 

  49. Schröder JM, Becker PE (1972) Anomalien des T-Systems und des sarkoplasmatischen Retikulums bei der Myotonie, Paramyotonie und Adynamie. Virchows Arch A Pathol Pathol Anat 357: 319–344

    Article  PubMed  Google Scholar 

  50. Sewry CA (2010) Muscular dystrophies: an update on pathology and diagnosis. Acta Neuropathol 120: 343–358

    Article  PubMed  CAS  Google Scholar 

  51. Shimokawa M, Ishiura S, Kameda N et al. (1997) Novel isoform of myotonin protein kinase: gene product of myotonic dystrophy is localized in the sarcoplasmic reticulum of skeletal muscle. Am J Pathol 150: 1285–1295

    PubMed  CAS  Google Scholar 

  52. Shintani F, Izumi M, Fujimura N (2009) Neuroleptic malignant syndrome versus malignant disease: idiosyncratic or synchronous? Lancet 374: 90

    Article  PubMed  Google Scholar 

  53. Spranger J, Hall BD, Hane B, Srivastava A, Stevenson RE (2000) Spectrum of schwartz-jampel syndrome includes micromelic chondrodysplasia, kyphomelic dysplasia, and burton disease [In Process Citation]. Am J Med Genet 94: 287–295

    Article  PubMed  CAS  Google Scholar 

  54. Tominaga K, Hayashi YK, Goto K, Minami N, Noguchi S, Nonaka I, Miki T, Nishino I (2010) Congenital myotonic dystrophy can show congenital fiber type disproportion pathology. Acta Neuropathol 119: 481–486

    Article  PubMed  CAS  Google Scholar 

  55. Vihola A, Bachinski LL, Sirito M et al. (2010) Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2. Acta Neuropathol 119: 465–479

    Article  PubMed  CAS  Google Scholar 

  56. Walton JN, Irving D, Tomlinson BE (1977) Spinal cord limb motor neurons in dystrophia myotonica. J Neurol Sci 34: 199–211

    Article  PubMed  CAS  Google Scholar 

  57. Wang J-F, Schröder JM (1999) Comparative morphometric evaluation of peripheral nerves and muscle fibers in myotonic dystrophy. Acta Neuropathol 99: 39–47

    Article  Google Scholar 

  58. Wieser T, Kraft B, Kress HG (2008) No carnitine palmitoyltransferase deficiency in skeletal muscle in 18 malignant hyperthermia susceptible individuals. Neuromuscul Disord 18: 471–474

    Article  PubMed  Google Scholar 

  59. Zhou H, Lillis S, Loy RE et al. (2010) Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 20: 166–173

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, J. (2012). Myotonische Erkrankungen und Ionenkanalkrankheiten. In: Klöppel, G., Kreipe, H., Remmele, W., Paulus, W., Schröder, J. (eds) Pathologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02324-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02324-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02323-1

  • Online ISBN: 978-3-642-02324-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics