Skip to main content

Hybrid Algorithm to Data Clustering

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Included in the following conference series:

  • 1659 Accesses

Abstract

In this research an N-Dimentional clustering algorithm based on ACE algorithm for large datasets is described. Each part of the algorithm will be explained and experimental results obtained from apply this algorithm are discussed. The research is focused on the fast and accurate clustering using real databases as workspace instead of directly loaded data into memory since this is very limited and insufficient when large data amount are used. This algorithm can be applied to a great variety and types of information i.e. geospatial data, medical data, biological data and others. The number of computations required by the algorithm is ~O(N).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, M.J.A., Linoff, G.: Data Mining Techniques – for Marketing, Sales and Customer Support. John Wiley & Sons, New York (1997)

    Google Scholar 

  2. Birdsall, C.K., Landon, A.B.: Plasma Physics via Computer Simulation. Adam Hilger, Bristol (1991)

    Book  Google Scholar 

  3. William, P., John, C., Clare, G.: New Unsupervised Clustering Algorithm for Large Datasets. In: SIGKDD 2003, Washington, DC, USA, August 24-24, 2003. ACM, New York (2003)

    Google Scholar 

  4. Hockney, R.W., Eastwood, J.W.: Computer Simulation using Particles. Adam Hilger, Bristol (1988)

    Book  MATH  Google Scholar 

  5. Bradley, P.S., Fayyad, U., Reina, C.: Scaling clustering algorithms to large databases. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, KDD 1998, New York, August 1998, pp. 9–15. AAAI Press, Menlo Park (1998)

    Google Scholar 

  6. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Applied Statistics 28, 100–108 (1979)

    Article  MATH  Google Scholar 

  7. Chao, S., et al.: Discovery of the Latent Supportive Relevance in Medical Data Mining. In: Data Mining in Medical and Biological Research, I-Tech, Vienna, Austria, December 2008, p. 320 (2008) ISBN 978-953-7619-30-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gil, M., Ochoa, A., Zamarrón, A., Carpio, J. (2009). Hybrid Algorithm to Data Clustering. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics