Advertisement

Performance Analysis of the Neighboring-Ant Search Algorithm through Design of Experiment

  • Claudia Gómez Santillán
  • Laura Cruz Reyes
  • Eustorgio Meza Conde
  • Claudia Amaro Martinez
  • Marco Antonio Aguirre Lam
  • Carlos Alberto Ochoa Ortíz Zezzatti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5572)

Abstract

In many science fields such as physics, chemistry and engineering, the theory and experimentation complement and challenge each other. Algorithms are the most common form of problem solving in many science fields. All algorithms include parameters that need to be tuned with the objective of optimizing its processes. The NAS (Neighboring-Ant Search) algorithm was developed to route queries through the Internet. NAS is based on the ACS (Ant Colony System) metaheuristic and SemAnt algorithm, hybridized with local strategies such as: learning, characterization, and exploration. This work applies techniques of Design of Experiments for the analysis of NAS algorithm. The objective is to find out significant parameters for the algorithm performance and relations among them. Our results show that the probability distribution of the network topology has a huge significance in the performance of the NAS algorithm. Besides, the probability distributions of queries invocation and repositories localization have a combined influence in the performance.

Keywords

Semantic Query Routing Metaheuristic Algorithm Parameter Setting Design of Experiment Factorial Design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birattari, M., Stutzle, T.: A Racing algorithm for Configuring Metaheuristics. Artificial life, 11–18 (2002)Google Scholar
  2. 2.
    Barr, R., Golden, J., Kelly, M.: Designing and Reporting Computational Experiments with Heuristics Methods. Journal of Heuristics 1, 9–32 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Michalewicz, Z.: How to solve it: Modern Heuristics. Springer, NY (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Angeline, P.: Adaptative and Self-Adaptative Evolutionary Computations. IEEE, Computational Intelligence, 152–163 (1995)Google Scholar
  5. 5.
    Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons, New York (2001)Google Scholar
  6. 6.
    Manson, R.L., Gunst, R.F., James, L.H.: Statistical Design and Analysis of Experiments with Applications to Engineering and Science, 2nd edn. Wiley – Interscience, Chichester (2003)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  8. 8.
    Michlmayr, E.: Ant Algorithms for Self-Organization in Social Networks. Doctoral Thesis, Women’s Postgraduate College for Internet Technologies (WIT), Institute of Software Technology and Interactive Systems, Vienna University of Technology (2007)Google Scholar
  9. 9.
    Ortega, R., et al.: Impact of Dynamic Growing on the Internet Degree Distribution. Polish Journal of Environmental Studies 16, 117–120 (2007)Google Scholar
  10. 10.
    Cruz-Reyes, L., et al.: NAS Algorithm for Semantic Query Routing System for Complex Network. In: Advances in Soft Computing, vol. 50, pp. 284–292. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Barabási, A.L., Albert, R., Jeong, H.: Mean-Field theory for scale-free random networks. Physic A 272, 173–189 (1999)CrossRefGoogle Scholar
  12. 12.
    Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Adenso-Díaz, B., Laguna, M.: Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search. Operation Research, 99–114 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Claudia Gómez Santillán
    • 1
    • 2
  • Laura Cruz Reyes
    • 1
  • Eustorgio Meza Conde
    • 2
  • Claudia Amaro Martinez
    • 1
  • Marco Antonio Aguirre Lam
    • 1
  • Carlos Alberto Ochoa Ortíz Zezzatti
    • 3
  1. 1.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Carretera Tampico-Puerto Industrial Alt., Km.14.5, Altamira,Tamps.México
  2. 2.Instituto Tecnológico de Ciudad Madero (ITCM)TamaulipasMéxico
  3. 3.Instituto de Ingeniería y TecnologíaUniversidad Autónoma de Ciudad JuárezChihuahuaMéxico

Personalised recommendations