Skip to main content

Unearth the Hidden Supportive Information for an Intelligent Medical Diagnostic System

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Included in the following conference series:

  • 1652 Accesses

Abstract

This paper presents an intelligent diagnostic supporting system – i  + DiaKAW (Intelligent and Interactive Diagnostic Knowledge Acquisition Workbench), which automatically extracts useful knowledge from massive medical data to support real medical diagnosis. In which, our two novel pre-processing algorithms MIDCA (Multivariate Interdependent Discretization for Continuous-valued Attributes) and LUIFS (Latent Utility of Irrelevant Feature Selection) for continuous feature discretization (CFD) and feature selection (FS) respectively, assist in accelerating the diagnostic accuracy by taking the attributes’ supportive relevance into consideration during the data preparation process. Such strategy minimizes the information lost and maximizes the intelligence and accuracy of the system. The empirical results on several real-life datasets from UCI repository demonstrate the goodness of our diagnostic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cios, K.J., Moore, G.W.: Uniqueness of Medical Data Mining. Journal of Artificial Intelligence in Medicine 26(1), 1–24 (2002)

    Article  Google Scholar 

  2. Yu, L., Liu, H.: Efficient Feature Selection via Analysis of Relevance and Redundancy. Journal of Machine Learning Research 5, 1205–1224 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  4. Caruana, R., Sa, V.R.: Benefiting from the Variables that Variable Selection Discards. Journal of Machine Learning Research 3, 1245–1264 (2003)

    MATH  Google Scholar 

  5. Jia, L., Xu, Y.: Guan Xing Bing De Zhen Duan Yu Zhi Liao. Jun Shi Yi Xue Ke Xue Chu Ban She (2001)

    Google Scholar 

  6. Bay, S.D.: Multivariate Discretization of Continuous Variables for Set Mining. In: Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 315–319 (2000)

    Google Scholar 

  7. Bay, S.D.: Multivariate Discretization for Set Mining. Knowledge and Information Systems 3(4), 491–512 (2001)

    Article  MATH  Google Scholar 

  8. Gu, W.Q.: Xin Xue Guan Ji Bing Jian Bie Zhen Duan Xue. Xue Yuan Chu Ban She (2006)

    Google Scholar 

  9. Kira, K., Rendell, L.: A Practical Approach to Feature Selection. In: International Conference on Machine Learning, pp. 249–256. Morgan Kaufmann, Aberdeen (1992a)

    Google Scholar 

  10. Kira, K., Rendell, L.: The Feature Selection Problem: Traditional Methods and New Algorithm. In: AAAI 1992, San Jose, CA (1992b)

    Google Scholar 

  11. Mitchell, T.M.: Machine Learning. McGraw-Hill Companies, Inc., New York (1997)

    MATH  Google Scholar 

  12. Zhu, X.L.: Fundamentals of Applied Information Theory. Tsinghua University Press (2000)

    Google Scholar 

  13. Fayyad, U.M., Irani, K.B.: Multi-interval Discretization of Continuous-valued Attributes for Classification Learning. In: Thirteenth International Joint Conference on Artificial Intelligence, pp. 1022–1027 (1993)

    Google Scholar 

  14. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. Irvine, CA: University of California, Department of Information and Computer Science (1998)

    Google Scholar 

  15. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  16. Langley, P., Iba, W., Thompsom, K.: An Analysis of Bayesian Classifiers. In: Tenth National Conference on Artificial Intelligence, pp. 223–228. AAAI Press and MIT Press (1992)

    Google Scholar 

  17. Almualim, H., Dietterich, T.G.: Learning with Many Irrelevant Features. In: Ninth National Conference on Artifical Intelligence, pp. 547–552. AAAI Press/The MIT Press, Anaheim, California (1992)

    Google Scholar 

  18. Scholkopf, B., Smola, A., Williamson, R.C., Bartlett, P.L.: New Support Vector Algorithms. Neural Computation 12, 1207–1245 (2000)

    Article  Google Scholar 

  19. Kasabov, N.K.: Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering. The MIT Press, Cambridge (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chao, S., Wong, F. (2009). Unearth the Hidden Supportive Information for an Intelligent Medical Diagnostic System. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics