Abstract

The focus of this paper is a review of a digital camera identification technique proposed by Lukas et al [1], and a modification of the denoising filter, allowing it to be used for raw sensor data. The approach of using raw sensor data allows analysis of the noise pattern separate from any artefacts introduced by on-board camera processing. We use this extension for investigating the reliability of the technique when using different lenses between the same camera and between cameras of the same manufacturer.

Keywords

digital forensic source identification sensor noise reference noise pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lukáš, J., Fridrich, J., Goljan, M.: Digital Camera Identification from Sensor Pattern Noise. IEEE Transactions on Information Security and Forensics 1(2), 205–214 (2006)CrossRefGoogle Scholar
  2. 2.
    Lukáš, J., Fridrich, J., Goljan, M.: Digital ‘Bullet Scratches’ for Images. In: Proc. ICIP 2005, Genova, Italy (September 2005)Google Scholar
  3. 3.
    Lukáš, J., Fridrich, J., Goljan, M.: Determining Digital Image Origin Using Sensor Imperfections. In: Proc. SPIE Electronic Imaging, Image and Video Communication and Processing, San Jose, California, January 16-20, pp. 249–260 (2005)Google Scholar
  4. 4.
    Mihcak, M.K., Kozintsev, I., Ramchandran, K.: Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising. In: Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Phoenix, AZ, vol. 6, pp. 3253–3256 (March 1999)Google Scholar
  5. 5.
    Standard of Japan Electronics and Information Technology Industries Association, Exchangeable image file format for digital still cameras: Exif Version 2.2, http://www.exif.org/Exif2-2.PDF (accessed on 7-11-2008)
  6. 6.
    ExifTool by Phil Harvey, http://www.sno.phy.queensu.ca/~phil/exiftool/ (accessed on 1-11-2008)
  7. 7.
    Decoding raw digital photos in Linux, http://www.cybercom.net/~dcoffin/dcraw/ (accessed on 7-11-2008)
  8. 8.
    Stanford University, WAVELAB, http://www-stat.stanford.edu/~wavelab/ (accessed on 7-11-2008)
  9. 9.
    Holst, G.C.: CCD Arrays, Cameras, and Displays, 2nd edn. JCD Publishing & SPIE Pres, USA (1998)Google Scholar
  10. 10.
    Janesick, J.R.: Scientific Charge-Coupled Devices, SPIE PRESS Monograph, vol. PM83. SPIET The International Society for Optical Engineering (January 2001)Google Scholar
  11. 11.
    Choi, K.S.: Automatic source camera identification using the intrinsic lens radial distortion. Optics express (1094-4087) 14(24), 11551 (2006)CrossRefGoogle Scholar
  12. 12.
    Johnson, M.K., Farid, H.: Exposing Digital Forgeries Through Chromatic Aberration. In: ACM Multimedia and Security Workshop, Geneva, Switzerland (2006)Google Scholar
  13. 13.
    Zamfir, A., Drimbarean, A., Zamfir, M., Buzuloiu, V., Steinberg, E., Ursu, D.: An optical model of the appearance of blemishes in digital photographs. In: Proc. SPIE, Digital Photography III, vol. 6502, pp. 0I10I12 (Feburary 2007) Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Simon Knight
    • 1
  • Simon Moschou
    • 1
  • Matthew Sorell
    • 1
  1. 1.School of Electrical & Electronic EngineeringThe University of AdelaideAustralia

Personalised recommendations