Skip to main content

Reduced Density Matrix Equations for Combined Instantaneous and Delayed Dissipation in Many-Atom Systems, and their Numerical Treatment

  • Chapter
  • First Online:
Book cover Energy Transfer Dynamics in Biomaterial Systems

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 93))

Abstract

A many-atom system excited by light or by collisions, such as is found in the photo-excitation of a molecule adsorbed on a surface or in photosynthesis and vision, leads to energy dissipation on different time scales. A fast dissipation typically occurs due to electronic energy relaxation in the medium, while a slow (delayed) dissipation arises from vibrational energy relaxation. In what follows we briey present a reduced density matrix treatment based on a self-consistent coupling of primary and secondary regions which includes their time correlation, in a generalization valid for an active medium. We also describe a numerical procedure based on an extended Runge-Kutta algorithm which can be applied to systems undergoing simultaneous fast and slow rates of dissipation. We illustrate our treatment with a realistic model for an adsorbate on a solid surface, CO=Cu(001) photoexcited by a femtosecond pulse of light and relaxing by electronic and vibrational pathways. Results for the populations of vibronic states versus time show that they oscillate due to vibrational coupling through dissipative interaction with the substrate, and are therefore in coherent quantum states. The total populations of electronic states are however little affected by vibrational motions. The same formalism and numerical procedure can be followed for example in treatments of photoexcitation of chromophores in biomolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Blum, Density Matrix Theory and Applications, 2nd. edition (Plenum Press, New York, 1981)

    Google Scholar 

  2. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, Oxford, England, 1995)

    Google Scholar 

  3. V. May and O. Kuhn “Charge and energy transfer dynamics in molecular systems” (Wiley-VCH, Weinheim, Germany, 2004)

    Google Scholar 

  4. A. Nitzan Chemical Dynamics in Condensed Phases (Oxford Univ. Press, Oxford, England, 2006)

    Google Scholar 

  5. D. A. Micha, A. Leathers, and B. Thorndyke in “Quantum Dynamics of Complex Molecular Systems” (Springer-Verlag, 2007) D. A. Micha and I. Burghardt, eds., pp. 165-194.

    Google Scholar 

  6. U. Fano, Rev. Modern Phys. 29, 74 (1957)

    Article  Google Scholar 

  7. P. O. Lowdin, Intern. J. Quantum Chem. Symp. 16, 485 (1982)

    Google Scholar 

  8. D. A. Micha, Intern. J. Quantum Chem. 80, 394 (2000)

    Article  CAS  Google Scholar 

  9. A. G. Redfield, Adv. Magn. Reson. 1, 1 (1965)

    Google Scholar 

  10. W. T. Pollard, A. K. Felts, and R. A. Friesner, Adv. Chem. Phys. 93, 77 (1996)

    Article  CAS  Google Scholar 

  11. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  Google Scholar 

  12. V. Gorini, A. Kossakowski, A., and E. C. G. Sudarshan, J. Math. Phys. 17,821 (1976)

    Article  Google Scholar 

  13. M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992)

    Article  Google Scholar 

  14. W. Huisinga, L. Pesce, R. Kosloff, and P. Saalfrank, J. Chem. Phys. 110, 5538 (1999)

    Article  CAS  Google Scholar 

  15. H. Guo and R. Q. Chen, J. Chem. Phys. 110, 6626 (1999)

    Article  CAS  Google Scholar 

  16. I. Kondov, U. Kleinekathofer, and M. Schreiber, J. Chem. Phys. 114, 1497 (2001)

    Article  CAS  Google Scholar 

  17. Y. Tanimura, J. Phys. Soc. Japan 75, 082001 (2006)

    Article  CAS  Google Scholar 

  18. T. Mancal, and V. May, Eur. Phys. J. B 18, 633 (2000)

    Article  CAS  Google Scholar 

  19. C. Meier and D. J. Tannor, J. Chem. Phys. 111 3365 (1999)

    Article  CAS  Google Scholar 

  20. U. Kleinekathofer, J. Chem. Phys. 121, 2505 (2004)

    Article  CAS  Google Scholar 

  21. H. Brunner and P. J. van der Houden, “The Numerical Solution of Volterra Equations” (North-Holland, New York, 1986)

    Google Scholar 

  22. A. S. Leathers and D. A. Micha, Chem. Phys. Lett. 415, 46 (2005)

    Article  CAS  Google Scholar 

  23. A. S. Leathers and D. A. Micha, J. Phys. Chem. A 110, 749 (2006).

    Article  CAS  Google Scholar 

  24. R. P. Feynman and F. L. Vernon Jr., Ann. Phys. 24, 118 (1963)

    Article  Google Scholar 

  25. N. Makri, Ann. Rev. Phys. Chem. 50, 167 (1999)

    Article  CAS  Google Scholar 

  26. G. A. Voth, Adv. Chem. Phys. 93, 135 (1996)

    Article  CAS  Google Scholar 

  27. P. Saalfrank and R. Kosloff, J. Chem. Phys. 105, 2441 (1996)

    Article  Google Scholar 

  28. H. Guo, P. Saalfrank and T. Seideman, Progr. Surf Sci. 62, 239 (1999)

    Article  CAS  Google Scholar 

  29. Z. Yi, D. A. Micha, and J. Sund, J. Chem. Phys. 110, 10562 (1999)

    Article  CAS  Google Scholar 

  30. D. A. Micha, A. Santana, and A. Salam, J. Chem. Phys. 116, 5173 (2002).

    Article  CAS  Google Scholar 

  31. D. A. Micha and A. Santana, J. Phys. Chem. A 107, 7311 (2003).

    Article  CAS  Google Scholar 

  32. J. L. Vega, R. Guantes, S. Miret-Artes, and D. A. Micha, J. Chem. Phys. 121, 8580 (2004)

    Article  CAS  Google Scholar 

  33. J. A. Prybyla and H. W. K. Tom and G.D. Aumiller, Phys. Rev. Lett. 68, 503 (1992)

    Article  CAS  Google Scholar 

  34. F. Hofmann and J. P. Toennies, Chem. Rev. 96 1307 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Micha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Micha, D.A., Leathers, A.S. (2009). Reduced Density Matrix Equations for Combined Instantaneous and Delayed Dissipation in Many-Atom Systems, and their Numerical Treatment. In: Burghardt, I., May, V., Micha, D., Bittner, E. (eds) Energy Transfer Dynamics in Biomaterial Systems. Springer Series in Chemical Physics, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02306-4_11

Download citation

Publish with us

Policies and ethics