Skip to main content

Laboratory Studies of Astrophysical Jets

  • Chapter
  • First Online:
Jets from Young Stars IV

Part of the book series: Lecture Notes in Physics ((LNP,volume 793))

Abstract

Jets and outflows produced during star-formation are observed on many scales: from the “micro-jets” which extend over a few hundred Astronomical Units to the “super-jets” which propagate over distances of a few parsecs. Recently, a new “class” of short-lived (hundreds of nano-seconds) centimetre-long jets has emerged in the laboratory as a complementary tool to study the physics of astrophysical jets. Here I will discuss and review the work aimed at “simulating” protostellar jets in the laboratory using z-pinch machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ampleford, D. J., et al.: Laboratory modeling of standing shocks and radiatively cooled jets with angular momentum. Astrophys. Space Sci. 307, 51–56 (2007).

    Article  ADS  Google Scholar 

  2. Ampleford, D. J., et al.: Supersonic radiatively cooled rotating ows and jets in the laboratory. Phys. Rev. Lett. 100, 35001 (2008).

    Article  ADS  Google Scholar 

  3. Anglada, G., et al.: Proper motions of the jets in the region of hh 30 and hl/xz tau: Evidence for a binary exciting source of the hh 30 jet. Astron. J. 133, 2799–2814 (2007).

    Article  ADS  Google Scholar 

  4. Bacciotti, F., et al.: Hubble space telescope stis spectroscopy of the optical outow from dg tauri: Structure and kinematics on subarcsecond scales. Astrophys. J. 537, L49–L52 (2000).

    Article  ADS  Google Scholar 

  5. Bally, J., Reipurth, Bo: Irradiated herbig-haro jets in the orion nebula and near ngc 1333. Astrophys. J. 546, 299–323 (2001).

    Article  ADS  Google Scholar 

  6. Canto, J., et al.,: The formation of interstellar jets by the convergence of supersonic conical ows. Astron. Astrophys. 192, 287–294 (1988).

    ADS  Google Scholar 

  7. Castor, J. I.: Astrophysical radiation dynamics: The prospects for scaling. Astrophys Space Sci. 307, 207–211 (2007).

    Article  ADS  Google Scholar 

  8. Ciardi, A., et al.: Curved herbig-haro jets: Simulations and experiments. Astrophys. J. 678, 968–973 (2008).

    Article  ADS  Google Scholar 

  9. Ciardi, A., et al.: Modeling magnetic tower jets in the laboratory. Astrophys. Space Sci. 298 (1–2), 277–286 (2005).

    Article  MATH  ADS  Google Scholar 

  10. Ciardi, A., et al.: Modeling of supersonic jet formation in conical wire array z-pinches. Laser Part. Beams. 20(2), 255–262 (2002).

    Article  ADS  Google Scholar 

  11. Ciardi, A., et al.: 3d mhd simulations of laboratory plasma jets. Astrophys. Space Sci. 307(1), 17–22 (2007).

    Article  ADS  Google Scholar 

  12. Ciardi, A., et al.: The evolution of magnetic tower jets in the laboratory. Physics of Plasmas. 14, 056501 (2007).

    Article  ADS  Google Scholar 

  13. Ciardi, A. et al.:. Episodic Magnetic Bubbles and Jets: Astrophysical Implications from Laboratory Experiments. submitted toApJL (ArXiv 0811.2736), November 2008.

    Google Scholar 

  14. Coffey, D., et al.: T tauri jet physics re-solved near the launching region with the hubble space telescope. to be published in The Astrophysical Journal, 2008. 33 pages, 16 figures, accepted by ApJ.

    Google Scholar 

  15. Coffey, D., et al.: Rotation of jets from young stars: New clues from the hubble space telescope imaging spectrograph. Astrophys. J. 604, 758–765 (2004).

    Article  ADS  Google Scholar 

  16. Combet, C., J. Ferreira. The radial structure of protostellar accretion disks: influence of jets. Astron. Astrophys. 479, 481–491 (2008).

    Article  ADS  Google Scholar 

  17. da Silva, L. B., et al.: Absorption measurements demonstrating the importance of delta n = 0 transitions in the opacity of iron. Phys. Rev. Lett. 69, 438–441 (1992).

    Article  ADS  Google Scholar 

  18. De Colle, F., et al.: The effect of a stellar magnetic variation on the Jet velocity. Astrophys. J. 688, 1137–1141, December 2008.

    Article  ADS  Google Scholar 

  19. Dougados, C., et al.: T tauri stars microjets resolved by adaptive optics. Astron. Astrophys. 357, L61–L64 (2000).

    ADS  Google Scholar 

  20. Drake, R. P.: The design of laboratory experiments to produce collisionless shocks of cosmic relevance. Physics of Plasmas. 7, 4690–4698 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  21. Drake, R. P.: High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics. Springer, Berlin (2006).

    Google Scholar 

  22. Egeland, A., Burke, W. J.: Kristian Birkeland, the First Space Scientist. In Astrophysics and Space Science Library, vol. 325, 2005.

    Google Scholar 

  23. Ferreira, J.: Mhd Disc Winds. In Lecture Notes in Physics, vol. 723, p.181. Springer Verlag, Berlin (2007).

    Google Scholar 

  24. Gdel, M., et al.: Discovery of a bipolar x-ray jet from the t tauri star dg tauri. Astron. Astrophys. 478, 797–807 (2008).

    Article  ADS  Google Scholar 

  25. Hartigan, P., et al.: Proper motions of the HH 47 jet observed with the hubble space telescope. Astron. J. 130, 2197–2205, November 2005.

    Article  ADS  Google Scholar 

  26. Hartigan, P., et al.: Magnetic fields in stellar jets. Astrophys. J. 661, 910–918 (2007).

    Article  ADS  Google Scholar 

  27. Jones, B. F., Herbig, G. H.: Proper motions of t tauri variables and other stars associated with the taurus-auriga dark clouds. Astron. J. 84:1872–1889 (1979).

    Article  ADS  Google Scholar 

  28. Kato, Y., et al.: Formation of semirelativistic jets from magnetospheres of accreting neutron stars: Injection of hot bubbles into a magnetic tower. Astrophys. J. 600:338–342 (2004).

    Article  ADS  Google Scholar 

  29. Kato, Y., et al.: Magnetohydrodynamic accretion ows: Formation of magnetic tower jet and subsequent quasi-steady state. Astrophys. J. 605(1):307–320 (2004).

    Article  ADS  Google Scholar 

  30. Lebedev, S. V. et al.: Jet detection via crosswinds: Laboratory astrophysical studies. Astrophys. J. 616:988–997 (2004).

    Article  ADS  Google Scholar 

  31. Lebedev, S. V., et al.: Laboratory astrophysics and collimated stellar outows: The production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564(1), 113–119 (2002).

    Article  ADS  Google Scholar 

  32. Lebedev, S. V., et al.: Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets. Plasma Phys. Contr. Fusion. 47, 465–B479 (2005).

    Article  Google Scholar 

  33. Lebedev, S. V., et al.: Magnetic tower outows from a radial wire array z-pinch. Mon. Not. R. Astron. Soc. 361, 97–108 (2005).

    Article  ADS  Google Scholar 

  34. Lovelace, R. V. E., et al.: Spin-up/spin-down of magnetized stars with accretion discs and outows. Mon. Not. R. Astron. Soc. 275, 244–254 (1995).

    ADS  Google Scholar 

  35. Lynden-Bell, D.: Magnetic collimation by accretion discs of quasars and stars. Mon. Not. R. Astron. Soc. 279(2), 389–401 (1996).

    ADS  Google Scholar 

  36. Lynden-Bell, D.: On why discs generate magnetic towers and collimate jets. Mon. Not. R. Astron. Soc. 341(4):1360–1372 (2003).

    Article  ADS  Google Scholar 

  37. Lynden-Bell, D.: Magnetic jets from swirling discs. Mon. Not. R. Astron. Soc. 369, 1167–1188 (2006).

    Article  ADS  Google Scholar 

  38. Masciadri, E., Raga, A. C.: A jet-side wind interaction model for the curved jets in the orion nebula. Astron J. 121, 408–412 (2001).

    Article  ADS  Google Scholar 

  39. Matt, S., et al.: Astrophysical explosions driven by a rotating, magnetized, gravitating sphere. Astrophys. J. 647:L45–L48 (2006).

    Article  ADS  Google Scholar 

  40. Mottelay, P. F.: William Gilbert of Colchester, Physician of London, On the Load Stone and Magnetic Bodies, and on the Great Magnet the Earth. J. Wiley and Sons, New York (1893).

    Google Scholar 

  41. Nakamura, M. et al.: Structure of magnetic tower jets in stratified atmospheres. Astrophys. J. 652, 1059–1067 (2006).

    Article  ADS  Google Scholar 

  42. Nakamura, M. et al.: Stability properties of magnetic tower jets. Astrophys. J. 656, 721–732 (2007).

    Article  ADS  Google Scholar 

  43. O’C Drury, L., Mendonca, J. T.: Explosion implosion duality and the laboratory simulation of astrophysical systems. Physics of Plasmas. 7, 5148–5152, December 2000.

    Article  ADS  Google Scholar 

  44. Pelletier, G.: Introduction to Magneto-Hydrodynamics. In Lecture Notes in Physics, vol. 723, p 77, Springer Verlag, Berlin (2007).

    Google Scholar 

  45. Remington, B. A. et al.: Supernova hydrodynamics experiments on the nova laser. Physics of Plasmas. 4, 1994–2003 (1997).

    Article  ADS  Google Scholar 

  46. Remington, B. A. et al.: Experimental astrophysics with high power lasers and z pinches. Reviews of Modern Physics, 78:755–807 (2006).

    Article  ADS  Google Scholar 

  47. Ryutov, D. et al.: Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J. 518, 821–832 (1999).

    Article  ADS  Google Scholar 

  48. Ryutov, D. D., et al.: The physics of fast z pinches. Reviews of Modern Physics. 72, 167–223 (2000).

    Article  ADS  Google Scholar 

  49. Ryutov, D. D., et al.: Criteria for scaled laboratory simulations of astrophysical mhd phenomena. Astrophys. J. Supplement Series. 127, 465–468 (2000).

    Article  ADS  Google Scholar 

  50. Ryutov, D. D., Remington, B. A.: Scaling astrophysical phenomena to high-energy-density laboratory experiments. Plasma Phys Contr Fusion. 44, 407 (2002).

    Article  Google Scholar 

  51. Ryutov, D. D., Remington, B. A.: A \perfect” hydrodynamic similarity and effect of the Reynolds number on the global scale motion. Physics of Plasmas. 10, 2629–2632 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  52. Tenorio-Tagle, G., et al.: The formation of interstellar jets. Astron. Astrophys. 202, 256–266 (1988).

    MATH  ADS  Google Scholar 

  53. Tsinganos, K.: Theory of mhd Jets and Outows. In Lecture Notes in Physics, vol. 723, p. 117, Springer Verlag, Berlin (2007).

    Google Scholar 

  54. Uzdensky, D. A., MacFadyen, A. I.: Stellar explosions by magnetic towers. Astrophys. J. 647, 1192–1212 (2006).

    Article  ADS  Google Scholar 

  55. van-de Hulst, H. C., Burgers, J. M., (eds.) Gas Dynamics of Cosmic Clouds. North-Holland Publishing Company, Amsterdam (1955).

    Google Scholar 

  56. Zel’Dovich, Ya. B., Raizer, Yu. P.: Physics of shock waves and high-temperature hydrodynamic phenomena. 1966/1967, Hayes, W. D.; Probstein, R. F (eds.). Academic Press, New York (1967).

    Google Scholar 

Download references

Acknowledgments

I would like to thank C. Stehlé (Observatoire de Paris), S.V. Lebedev (Imperial College) and A. Frank (University of Rochester) for many useful discussions. This work was supported in part by the European Community´s Marie Curie Actions-Human Resource and Mobility within the JETSET (Jet Simulations Experiments and Theory) network under contract RTNCT- 2004 005592. Access to the Marenostrum supercomputer, at the Barcelona Supercomputing Centre (Spain), was granted through the HPC-EUROPA project (RII3-CT-2003-506079), with the support of the European Community – Research Infrastructure Action under the FP6 ´Structuring the European Research Area´ Programme. Finally, the author acknowledges the London e-Science Centre (LESC) for the provision of computational facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ciardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ciardi, A. (2010). Laboratory Studies of Astrophysical Jets. In: Garcia, P., Ferreira, J. (eds) Jets from Young Stars IV. Lecture Notes in Physics, vol 793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02289-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02289-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02288-3

  • Online ISBN: 978-3-642-02289-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics