Combining Fuzzy C-Mean and Normalized Convolution for Cloud Detection in IR Images

  • Anna Anzalone
  • Francesco Isgrò
  • Domenico Tegolo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5571)

Abstract

An important task for the cloud monitoring in several frameworks is providing maps of the cloud coverage. In this paper we present a method to detect cloudy pixels for images taken from ground by an infra-red camera. The method is a three-steps algorithm mainly based on a Fuzzy C-Mean clustering, that works on a feature space derived from the original image and the output of the reconstructed image obtained via normalized convolution. Experiments, run on several infra-red images acquired under different conditions, show that the cloud maps returned are satisfactory.

Keywords

Cloudiness mask fuzzy set infra-red images 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shiffman, S., Nemani, R.: Evaluation of decision trees for cloud detection from AVHRR data. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 5610–5613. IEEE Press, Los Alamitos (2005)Google Scholar
  2. 2.
    Ackerman, S., et al.: Discriminating clear sky from clouds with MODIS. J. Geophysical Research. 103, 141–157 (1998)CrossRefGoogle Scholar
  3. 3.
    Seiz, G., Baltisavias, E.P., Gruen, A.: Cloud Mapping from the Ground:Use of Photogrammetric Methods. J. Photogrammetric Engineering and Remote Sensing, 941–951 (2002)Google Scholar
  4. 4.
    Murtagh, F., Barreto, D., Marcello, J.: Decision Boundaries Using Bayes Factors:The Case of Cloud Masks. J. IEEE Trans. on Geoscience and Remote Sensing 14, 2052–2958 (2003)Google Scholar
  5. 5.
    Lee, Y., Wahba, G., Ackerman, S.A.: Cloud classification of satellite radiance data by multicategory support vector machines. J. of Atmospheric and Oceanic Technology 21(2), 159–169 (2004)CrossRefGoogle Scholar
  6. 6.
    Knutsson, H., Westin, C.F.: Normalized and differential convolution: Methods for interpolation and filtering of incomplete and uncertain data. In: Proceedings of Computer Vision and Pattern Recognition 1993, pp. 515–523 (1993)Google Scholar
  7. 7.
    Knutsson, H., Westin, C.F., Westelius, C.J.: Filtering of uncertain irregularly sampled multidimensional data. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers 1993, vol. 2, pp. 1301–1309 (1993)Google Scholar
  8. 8.
    Lee, J., Liu, R.: A Fuzzy Clustering Algorithm Based on Fuzzy Distance Norms for Asynchronously Sampled Data. In: 11th IEEE International Conference on Computational Science and Engineering, CSC 2008, pp. 361–368 (2008)Google Scholar
  9. 9.
    El-Melegy, M., Zanaty, E.A., Abd-Elhafiez, W.M., Farag, A.: On Cluster Validity Indexes in Fuzzy and Hard Clustering Algorithms for Image Segmentation. In: IEEE International Conference on Image Processing, vol. 6, pp. 5–8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anna Anzalone
    • 1
  • Francesco Isgrò
    • 2
  • Domenico Tegolo
    • 3
  1. 1.INAF - Istituto di Astrofisica e Fisica CosmicaPalermoItaly
  2. 2.Dipartimento di Scienze FisicheUniversità degli Studi di Napoli Federico IINapoliItaly
  3. 3.Dipartimento di Matematica ed ApplicazioniUniversità di PalermoPalermoItaly

Personalised recommendations