Skip to main content

Bounded Linear Logic, Revisited

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5608))

Abstract

We present QBAL, an extension of Girard, Scedrov and Scott’s bounded linear logic. The main novelty of the system is the possibility of quantifying over resource variables. This generalization makes bounded linear logic considerably more flexible, while preserving soundness and completeness for polynomial time. In particular, we provide compositional embeddings of Leivant’s RRW and Hofmann’s LFPL into QBAL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Computational Logic 3(1), 137–175 (2002)

    Article  Google Scholar 

  2. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. In: Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1984)

    Google Scholar 

  3. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. Extended Version (2009), http://arxiv.org/abs/0904.2675

  5. Danos, V., Joinet, J.-B.: Linear logic and elementary time. Information and Computation 183(1), 123–137 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Girard, J.-Y.: Light linear logic. Information and Computation 143(2), 175–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Girard, J.-Y., Scedrov, A., Scott, P.: Bounded linear logic: A modular approach to polynomial-time computability. Theoretical Computer Science 97(1), 1–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hofmann, M.: Programming languages capturing complexity classes. SIGACT News Logic Column 9, 12 (2000)

    Google Scholar 

  10. Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Information and Computation 183(1), 57–85 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hofmann, M., Scott, P.: Realizability models for BLL-like languages. Theoretical Computer Science 318(1-2), 121–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science 318(1-2), 163–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leivant, D.: A foundational delineation of computational feasiblity. In: Sixth IEEE Symposium on Logic in Computer Science, Proceedings, pp. 2–11 (1991)

    Google Scholar 

  14. Leivant, D.: Stratified functional programs and computational complexity. In: 20th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Proceedings, pp. 325–333 (1993)

    Google Scholar 

  15. Marion, J.-Y., Moyen, J.-Y.: Efficient first order functional program interpreter with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955, pp. 25–42. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Murawski, A., Ong, L.: On an interpretation of safe recursion in light affine logic. Theoretical Computer Science 318(1-2), 197–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schöpp, U.: Stratified bounded affine logic for logarithmic space. In: 22nd IEEE Symposium on Logic in Computer Science, Proceedings, pp. 411–420 (2007)

    Google Scholar 

  18. Troelstra, A., Schwichtenberg, H.: Basic proof theory. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  19. Wadsworth, C.: Some unusual λ-calculus numeral systems. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, London (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dal Lago, U., Hofmann, M. (2009). Bounded Linear Logic, Revisited. In: Curien, PL. (eds) Typed Lambda Calculi and Applications. TLCA 2009. Lecture Notes in Computer Science, vol 5608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02273-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02273-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02272-2

  • Online ISBN: 978-3-642-02273-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics