Bounded Linear Logic, Revisited

  • Ugo Dal Lago
  • Martin Hofmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5608)


We present QBAL, an extension of Girard, Scedrov and Scott’s bounded linear logic. The main novelty of the system is the possibility of quantifying over resource variables. This generalization makes bounded linear logic considerably more flexible, while preserving soundness and completeness for polynomial time. In particular, we provide compositional embeddings of Leivant’s RRW and Hofmann’s LFPL into QBAL.


Polynomial Time Linear Logic Sequent Calculus Resource Variable Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Computational Logic 3(1), 137–175 (2002)CrossRefGoogle Scholar
  2. 2.
    Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. In: Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1984)Google Scholar
  3. 3.
    Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. Extended Version (2009),
  5. 5.
    Danos, V., Joinet, J.-B.: Linear logic and elementary time. Information and Computation 183(1), 123–137 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Girard, J.-Y.: Light linear logic. Information and Computation 143(2), 175–204 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Girard, J.-Y., Scedrov, A., Scott, P.: Bounded linear logic: A modular approach to polynomial-time computability. Theoretical Computer Science 97(1), 1–66 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hofmann, M.: Programming languages capturing complexity classes. SIGACT News Logic Column 9, 12 (2000)Google Scholar
  10. 10.
    Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Information and Computation 183(1), 57–85 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hofmann, M., Scott, P.: Realizability models for BLL-like languages. Theoretical Computer Science 318(1-2), 121–137 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science 318(1-2), 163–180 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Leivant, D.: A foundational delineation of computational feasiblity. In: Sixth IEEE Symposium on Logic in Computer Science, Proceedings, pp. 2–11 (1991)Google Scholar
  14. 14.
    Leivant, D.: Stratified functional programs and computational complexity. In: 20th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Proceedings, pp. 325–333 (1993)Google Scholar
  15. 15.
    Marion, J.-Y., Moyen, J.-Y.: Efficient first order functional program interpreter with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955, pp. 25–42. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Murawski, A., Ong, L.: On an interpretation of safe recursion in light affine logic. Theoretical Computer Science 318(1-2), 197–223 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schöpp, U.: Stratified bounded affine logic for logarithmic space. In: 22nd IEEE Symposium on Logic in Computer Science, Proceedings, pp. 411–420 (2007)Google Scholar
  18. 18.
    Troelstra, A., Schwichtenberg, H.: Basic proof theory. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  19. 19.
    Wadsworth, C.: Some unusual λ-calculus numeral systems. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, London (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ugo Dal Lago
    • 1
  • Martin Hofmann
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di BolognaItaly
  2. 2.Institut für InformatikLMU MünchenGermany

Personalised recommendations