Thick Subtrees, Games and Experiments

  • Pierre Boudes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5608)


We relate the dynamic semantics (games, dealing with interactions) and the static semantics (dealing with results of interactions) of linear logic with polarities, in the spirit of Timeless Games [1].

The polarized game semantics is full and faithfull for polarized proof-nets [2]. We detail the correspondence between cut free proof-nets and innocent strategies, in a framework related to abstract Böhm trees.

A notion of thick subtree allows us to reveal a deep relation between plays in games and Girard’s experiments on proof-nets. We then define a desequentializing operation, forgetting time in games which coincides with the usual way of computing a result of interaction from an experiment. We then obtain our main result: desequentializing the game interpretation of a polarized proof-net yields its standard relational model interpretation (static semantics).


Linear Logic Label Function Tree Morphism Static Semantic Negative Conclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baillot, P., Danos, V., Ehrhard, T., Regnier, L.: Timeless games. In: Nielsen, M., Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 56–77. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Laurent, O.: Syntax vs. semantics: a polarized approach. Theoretical Computer Science 343(1–2), 177–206 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abramsky, S., McCusker, G.: Game semantics. In: Proceedings of Marktorberdorf of the 1997 Summer School. Lecture notes. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Laurent, O.: Polarized games. Annals of Pure and Applied Logic 130(1–3), 79–123 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tortora de Falco, L.: Réseaux, cohérence et expériences obsessionnelles. Thèse de doctorat, Université Paris VII (2000)Google Scholar
  7. 7.
    Ehrhard, T.: Projecting sequential algorithms on strongly stable functions. Annals of Pure and Applied Logic 77 (1996)Google Scholar
  8. 8.
    Melliès, P.A.: Sequential algorithms and strongly stable functions. Theoretical Computer Science 343(1-2), 237–281 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boudes, P.: Non uniform hypercoherences. In: Blute, R., Selinger, P. (eds.) Proceedings of CTCS 2002. Electronic Notes in Theoretical Computer Science, vol. 69. Elsevier, Amsterdam (2003)Google Scholar
  10. 10.
    Boudes, P.: Projecting games on hypercoherences. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 257–268. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Curien, P.L.: Abstract Böhm trees. Mathematical Structures in Computer Science 8(6) (1998)Google Scholar
  12. 12.
    Curien, P.-L., Herbelin, H.: Computing with abstract Böhm trees. In: Sato, M., Toyama, Y. (eds.) Fuji International Symposium on Functional and Logic Programming (FLOPS 1998), Kyoto, Japan, April 2-4, 1998, pp. 20–39. World Scientific, Singapore (1998)Google Scholar
  13. 13.
    Laurent, O.: Étude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II (March 2002)Google Scholar
  14. 14.
    Laurent, O., Tortora de Falco, L.: Slicing polarized additive normalization. In: Ehrhard, T., Girard, J.Y., Ruet, P., Scott, P. (eds.) Linear Logic in Computer Science. Lecture Notes Series, vol. 316, pp. 247–282. London Mathematical Society (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pierre Boudes
    • 1
  1. 1.Laboratoire d’Informatique de l’université Paris-Nord UMR CNRS 7030 Institut GaliléeUniversité Paris-NordVilletaneuseFrance

Personalised recommendations