Complexity of Gödel’s T in λ-Formulation

  • Gunnar Wilken
  • Andreas Weiermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5608)


Let T be Gödel’s system of primitive recursive functionals of finite type in the λ-formulation. We define by constructive means using recursion on nested multisets a multivalued function I from the set of terms of T into the set of natural numbers such that if a term a reduces to a term b and if a natural number I(a) is assigned to a then a natural number I(b) can be assigned to b such that I(a) > I(b). The construction of I is based on Howard’s 1970 ordinal assignment for T and Weiermann’s 1996 treatment of T in the combinatory logic version. As a corollary we obtain an optimal derivation length classification for the λ-formulation of T and its fragments. Compared with Weiermann’s 1996 exposition this article yields solutions to several non-trivial problems arising from dealing with λ-terms instead of combinatory logic terms.


Typed λ-Calculus Rewrite System Gödel’s T Strong Normalization Termination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckmann, A., Weiermann, A.: Analyzing Gödel’s T via Expanded Head Reduction Trees. Mathematical Logic Quarterly 46, 517–536 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buchholz, W., Cichon, E.A., Weiermann, A.: A Uniform Approach to Fundamental Sequences and Hierarchies. Mathematical Logic Quarterly 40, 273–286 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cardone, F., Hindley, J.R.: History of λ-Calculus and Combinatory Logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic, vol. 5. Elsevier, Amsterdam (to appear)Google Scholar
  4. 4.
    Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Howard, W.A.: Assignment of Ordinals to Terms For Primitive Recursive Functionals of Finite Type. Intuitionism and Proof Theory, pp. 443–458. North Holland, Amsterdam (1970)Google Scholar
  6. 6.
    Parsons, C.: On n-Quantifier Induction. The Journal of Symbolic Logic 37(3), 466–482 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Schütte, K.: Proof Theory. Springer, Heidelberg (1977)CrossRefzbMATHGoogle Scholar
  8. 8.
    Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, New York (1967)zbMATHGoogle Scholar
  9. 9.
    Weiermann, A.: How Is it That Infinitary Methods Can Be Applied to Finitary Mathematics? Gödel’s T: A Case Study. The Journal of Symbolic Logic 63(4), 1348–1370 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gunnar Wilken
    • 1
  • Andreas Weiermann
    • 2
  1. 1.Mathematical Biology UnitOkinawa Institute of Science and TechnologyOkinawaJapan
  2. 2.Vakgroep Zuivere Wiskunde en ComputeralgebraUniversiteit GentGentBelgium

Personalised recommendations