Inhabitation of Low-Rank Intersection Types

  • Paweł Urzyczyn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5608)


We prove that the inhabitation problem (“Does there exist a closed term of a given type?”) is undecidable for intersection types of rank 3 and exponential space complete for intersection types of rank 2.


Intersection Type Turing Machine Time Stamp Choice State Inhabitation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alessi, F., Barbanera, F.: Strong conjunction and intersection types. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 64–73. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  2. 2.
    Alessi, F., Barbanera, F., Dezani-Ciancaglini, M.: Intersection types and lambda models. Theoretical Computer Science 355(2), 108–126 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bunder, M.W.: The inhabitation problem for intersection types. In: Harland, J., Manyem, P. (eds.) Computing: The Australasian Theory Symposium. Conferences in Research and Practice in Information Technology, vol. 77, pp. 7–14. Australian Computer Society (2008)Google Scholar
  4. 4.
    Coppo, M., Dezani-Ciancaglini, M.: An extension of basic functionality theory for lambda-calculus. Notre Dame Journal of Formal Logic 21, 685–693 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dezani-Ciancaglini, M., Ghilezan, S., Venneri, B.: The “relevance” of intersection and union types. Notre Dame Journal of Formal Logic 38(2), 246–269 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kfoury, A.J., Wells, J.B.: Principality and type inference for intersection types using expansion variables. Theoretical Computer Science 311(1–3), 1–70 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kozen, D.: Automata and Computability. Undergraduate Texts in Computer Science. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kozen, D.: Theory of Computation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Kurata, T., Takahashi, M.: Decidable properties of intersection type systems. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 297–311. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Kuśmierek, D.: The inhabitation problem for rank two intersection types. In: Ronchi Della Rocca, S. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 240–254. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Leivant, D.: Polymorphic type inference. In: PoPL, pp. 88–98. ACM Press, New York (1983)Google Scholar
  12. 12.
    Liquori, L., Ronchi Della Rocca, S.: Intersection-types à la Church. Information and Computation 205(9), 1371–1386 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lopez-Escobar, E.G.K.: Proof functional connectives. In: Methods in Mathematical Logic. LNMath, vol. 1130, pp. 208–221. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  14. 14.
    Mints, G.E.: The completeness of provable realizability. Notre Dame Journal of Formal Logic 30, 420–441 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Møller Neergaard, P., Mairson, H.G.: Types, potency, and idempotency: Why nonlinearity and amnesia make a type system work. In: ICFP, pp. 138–149. ACM Press, New York (2004)Google Scholar
  16. 16.
    Pottinger, G.: A type assingment for the strongly normalizable λ-terms. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 561–577. Academic Press, London (1980)Google Scholar
  17. 17.
    Ronchi Della Rocca, S., Roversi, L.: Intersection logic. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 414–428. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  19. 19.
    TLCA List of Open Problems,
  20. 20.
    Urzyczyn, P.: The emptiness problem for intersection types. Journal of Symbolic Logic 64(3), 1195–1215 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Venneri, B.: Intersection types as logical formulae. Journal of Logic and Computation 4(2), 109–124 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wells, J.B., Haack, C.: Branching types. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 115–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Yokouchi, H.: Embedding a second-order type system into an intersection type system. Information and Computation 117(2), 206–220 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paweł Urzyczyn
    • 1
  1. 1.Institute of InformaticsUniversity of WarsawPoland

Personalised recommendations