Advertisement

Initial Algebra Semantics for Cyclic Sharing Structures

  • Makoto Hamana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5608)

Abstract

Terms are a concise representation of tree structures. Since they can be naturally defined by an inductive type, they offer data structures in functional programming and mechanised reasoning with useful principles such as structural induction and structural recursion. In the case of graphs or ”tree-like” structures – trees involving cycles and sharing – however, it is not clear what kind of inductive structures exists and how we can faithfully assign a term representation of them. In this paper we propose a simple term syntax for cyclic sharing structures that admits structural induction and recursion principles. We show that the obtained syntax is directly usable in the functional language Haskell, as well as ordinary data structures such as lists and trees. To achieve this goal, we use categorical approach to initial algebra semantics in a presheaf category. That approach follows the line of Fiore, Plotkin and Turi’s models of abstract syntax with variable binding.

Keywords

Abstract Syntax Typing Rule Inductive Type Structural Recursion Variable Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AAMV03]
    Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: a coalgebraic view. Theor. Comput. Sci. 300(1-3), 1–45 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [AK96]
    Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundam. Inform. 26(3/4), 207–240 (1996)MathSciNetzbMATHGoogle Scholar
  3. [Bro05]
    Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. [BvEG+87]
    Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, R., Plasmeijer, M.J., Ronan Sleep, M.: Term graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 141–158. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  5. [CFR+91]
    Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Efficiently computing static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490 (1991)CrossRefGoogle Scholar
  6. [CGZ05]
    Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. In: Proc. of POPL 2005, pp. 271–282 (2005)Google Scholar
  7. [CKV74]
    Courcelle, B., Kahn, G., Vuillemin, J.: Algorithmes d’equivalence et de reduction a des expressions minimales dans une classe d’equations recursives simples. In: Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 200–213. Springer, Heidelberg (1974)Google Scholar
  8. [Dyb94]
    Dybjer, P.: Inductive families. Formal Aspects of Computing 6, 440–465 (1994)CrossRefzbMATHGoogle Scholar
  9. [Fio02]
    Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda calculus. In: Proc. of PPDP 2002, pp. 26–37 (2002)Google Scholar
  10. [Fio08]
    Fiore, M.: Second-order and dependently-sorted abstract syntax. In: Proc. of LICS 2008, pp. 57–68 (2008)Google Scholar
  11. [FPT99]
    Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proc. of 14th Annual Symposium on Logic in Computer Science, pp. 193–202 (1999)Google Scholar
  12. [GHUV06]
    Ghani, N., Hamana, M., Uustalu, T., Vene, V.: Representing cyclic structures as nested datatypes. In: Proc. of TFP 2006, pp. 173–188 (2006)Google Scholar
  13. [GJ07]
    Ghani, N., Johann, P.: Initial algebra semantics is enough! In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 207–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. [GUH06]
    Ghani, N., Uustalu, T., Hamana, M.: Explicit substitutions and higher-order syntax. Higher-Order and Symbolic Computation 19(2/3), 263–282 (2006)CrossRefzbMATHGoogle Scholar
  15. [Ham04]
    Hamana, M.: Free Σ-monoids: A higher-order syntax with metavariables. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 348–363. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. [Has97]
    Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of let and letrec. PhD thesis, University of Edinburgh (1997)Google Scholar
  17. [Has02]
    Hasegawa, R.: Two applications of analytic functors. Theor. Comput. Sci. 272(1-2), 113–175 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [HJ98]
    Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inf. Comput. 145(2), 107–152 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [JG08]
    Johann, P., Ghani, N.: Foundations for structured programming with GADTs. In: Proc. of POPL 2008, pp. 297–308 (2008)Google Scholar
  20. [McB02]
    McBride, C.: Faking it: Simulating dependent types in Haskell. J. Funct. Program. 12(4&5), 375–392 (2002)MathSciNetzbMATHGoogle Scholar
  21. [MS03]
    Miculan, M., Scagnetto, I.: A framework for typed HOAS and semantics. In: Proc. of PPDP 2003, pp. 184–194. ACM Press, New York (2003)Google Scholar
  22. [Nor07]
    Norell, U.: Towards a practical programming language based on dependent type theory. PhD thesis, Chalmers University of Technology (2007)Google Scholar
  23. [PVWW06]
    Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based type inference for GADTs. In: Proc. of ICFP 2006, pp. 50–61 (2006)Google Scholar
  24. [Rob02]
    Robinson, E.: Variations on algebra: monadicity and generalisations of equational theories. Formal Aspects of Computing 13(3-5), 308–326 (2002)CrossRefzbMATHGoogle Scholar
  25. [SP82]
    Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain equations. SIAM J. Comput 11(4), 763–783 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  26. [Tar72]
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal of Computing 1(2), 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Makoto Hamana
    • 1
  1. 1.Department of Computer ScienceGunma UniversityJapan

Personalised recommendations