Square and Rectangle Covering with Outliers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5598)


For a set of n points in the plane, we consider the axis–aligned (p,k)-Box Covering problem: Find p axis-aligned, pairwise disjoint boxes that together contain exactly n − k points. Here, our boxes are either squares or rectangles, and we want to minimize the area of the largest box. For squares, we present algorithms that find the solution in O(n + klogk) time for p = 1, and in O(nlogn + k p log p k) time for p = 2,3. For rectangles we have running times of O(n + k 3) for p = 1 and O(nlogn + k 2 + p log p − 1 k) time for p = 2,3. In all cases, our algorithms use O(n) space.


Extreme Point Covering Problem Covering Algorithm Optimal Index Vertical Slab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. J. Algorithms 12, 38–56 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ahn, H.-K., Bae, S.W.: Covering a point set by two disjoint rectangles. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 728–739. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Atanassov, R., Bose, P., Couture, M., Maheshwari, A., Morin, P., Paquette, M., Smid, M., Wuhrer, S.: Algorithms for optimal outlier removal. J. Discrete Alg. (to appear)Google Scholar
  4. 4.
    Bespamyatnikh, S., Segal, M.: Covering a set of points by two axis–parallel boxes. Inform. Proc. Lett, 95–100 (2000)Google Scholar
  5. 5.
    Chan, T.M.: Geometric applications of a randomized optimization technique. Discrete Comput. Geom. 22(4), 547–567 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chazelle, B.: An algorithm for segment-dragging and its implementation. Algorithmica 3, 205–221 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  8. 8.
    Das, S., Goswamib, P.P., Nandy, S.C.: Smallest k-point enclosing rectangle and square of arbitrary orientation. Inform. Proc. Lett. 94(6), 259–266 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jaromczyk, J.W., Kowaluk, M.: Orientation independent covering of point sets in R 2 with pairs of rectangles or optimal squares. In: Abstracts 12th European Workshop Comput. Geom., pp. 77–84. Universität Münster (1996)Google Scholar
  10. 10.
    Katz, M.J., Kedem, K., Segal, M.: Discrete rectilinear 2-center problems. Comput. Geom. Theory Appl. 15, 203–214 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Matoušek, J., Welzl, E., Sharir, M.: A subexponential bound for linear programming and related problems. Algorithmica 16, 365–384 (1996)zbMATHGoogle Scholar
  12. 12.
    Saha, C., Das, S.: Covering a set of points in a plane using two parallel rectangles. In: ICCTA 2007: Proceedings of the International Conference on Computing: Theory and Applications, pp. 214–218 (2007)Google Scholar
  13. 13.
    Segal, M.: Lower bounds for covering problems. Journal of Mathematical Modelling and Algorithms 1, 17–29 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Segal, M., Kedem, K.: Enclosing k points in the smallest axis parallel rectangle. Inform. Process. Lett. 65, 95–99 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sharir, M., Welzl, E.: Rectilinear and polygonal p-piercing and p-center problems. In: Proc. 12th Annu. ACM Sympos. Comput. Geom, pp. 122–132 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringPOSTECHSouth Korea
  2. 2.Graduate School of Information ScienceTohoku UniversityJapan

Personalised recommendations