Skip to main content

Validation of Fuzzy Connectedness Segmentation for Jaw Tissues

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5602))

Abstract

Most of the dental implant planning systems implement 3D reconstructions of the CT-data in order to achieve more intuitive interfaces. This way, the dentists or surgeons can handle the patient’s virtual jaw in the space and plan the location, orientation and some other features of the implant from the orography and density of the jaw. The segmentation of the jaw tissues (the cortical bone, the trabecular core and the mandibular channel) is critical for this process, because each one has different properties and in addition, because an injury of the channel in the surgery may cause lip numbness. Current programs don’t carry out the segmentation process or just do it by hard thresholding or by means of exhaustive human interaction. This paper deals with the validation of fuzzy connectedness theory for the automated, accurate and time efficient segmentation of jaw tissues.

This work has been supported by the project MIRACLE (DPI2007-66782-C03-01-AR07) of Spanish Ministerio de Educación y Ciencia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reiser, G.M., Manwaring, J.D., Damoulis, P.D.: Clinical significance of the structural integrity of the superior aspect of the mandibular canal. Journal of Periodontology 75(2), 322–326 (2004)

    Article  Google Scholar 

  2. Verstreken, K., Cleynenbreugel, J.V., Martens, K., Marchal, G., van Steenberghe, D., Suetens, P.: An image-guided planning system for endosseous oral implants. IEEE Transactions on Medical Imaging 17(5), 842–852 (1998)

    Article  Google Scholar 

  3. Galanis, C.C., Sfantsikopoulos, M.M., Koidis, P.T., Kafantaris, N.M., Mpikos, P.G.: Computer methods for automating preoperative dental implant planning: Implant positioning and size assignment. Computer Methods and Programs in Biomedicine 86(1), 30–38 (2007)

    Article  Google Scholar 

  4. Fütterling, S., Klein, R., Straßer, W., Weber, H.: Automated finite element modeling of a human mandible with dental implants (1998)

    Google Scholar 

  5. Stein, W., Hassfeld, S., Muhling, J.: Tracing of thin tubular structures in computer tomographic data. Computer Aided Surgery 3 (1998)

    Google Scholar 

  6. Kršek, P., Krupa, P., Cernochová, P.: Teeth and jaw 3D reconstruction in stomatology. In: Medical Information Visualisation - BioMedical Visualisation. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  7. Kang, H., Pinti, A., Vermeiren, L., Taleb-Ahmed, A., Zeng, X.: An automatic FCM-based method for tissue classification. Bioinformatics and Biomedical Engineering

    Google Scholar 

  8. DeBruijne, B., Ginneken, B.V., Niessen, W., Viergever, M., Wiro, J.: Adapting active shape models for 3D segmentation of tubular structures in medical images. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 136–147. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Rueda, S., Gil, J.A., Pichery, R., Niz, M.A.: Automatic segmentation of jaw tissues in CT using active appearance models and semi-automatic landmarking. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 167–174. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Udupa, J.K., Wei, L., Samaraeskera, S., Miki, Y., van Buchem, M.A., Grossman, R.I.: Multiple sclerosis lesion quantification using fuzzy connectedness principles. IEEE Trans. Medical Imaging 16

    Google Scholar 

  11. Udupa, J.K., Odhner, D., Tian, J., Holland, G., Axel, L.: Automatic clutter-free volume rendering for MR angiography using fuzzy connectedness. In: SPIE Proceedings Medical Imaging, vol. 3034

    Google Scholar 

  12. Udupa, J.K., Tian, J., Hemmy, D., Tessier, P.: A pentium PC-based craniofacial 3D imaging and analysis system. J. Craniofacial Surgery 8

    Google Scholar 

  13. Udupa, J., Samarasekera, S.: Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation. Graphical Models and Image Processing 58(3), 246–261 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lloréns, R., Naranjo, V., Clemente, M., Alcañiz, M., Albalat, S. (2009). Validation of Fuzzy Connectedness Segmentation for Jaw Tissues. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02267-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02266-1

  • Online ISBN: 978-3-642-02267-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics