Highlight on a Feature Extracted at Fine Scales: The Pointwise Lipschitz Regularity

  • Christophe Damerval
  • Sylvain Meignen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5567)


The aim of this paper is to study the robustness of the pointwise Lipschitz regularity in 2D, which is a measure of the local regularity of the intensity function associated to an image. This regularity can be efficiently computed by an approach based on fine scales. We assess its robustness when the image undergoes various transformations, especially geometric ones. The results we obtain show that the pointwise Lipschitz regularity is a suitable feature for applications in computer vision.


Lipschitz regularity invariance properties wavelet decompositions multiscale edge detection extraction of characteristic values robustness to transformations applied to the image 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. of the Electrotechnical Laboratory 26, 368–388 (1962)Google Scholar
  2. 2.
    Lindeberg, T.: Scale Space Theory in Computer Vision. Kluwer, Dordrecht (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Witkin, A.: Scale-space filtering. In: Proceedings of the 8th International Joint Conference on Artificial Intelligence, pp. 1019–1021 (1983)Google Scholar
  4. 4.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 77–116 (1998)Google Scholar
  5. 5.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 62(1), 43–72 (2005)CrossRefGoogle Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on PAMI 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conf., pp. 384–393 (2002)Google Scholar
  10. 10.
    Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. International Journal of Computer Vision 59(1), 61–85 (2004)CrossRefGoogle Scholar
  11. 11.
    Arneodo, A., Bacry, E., Jaffard, S., Muzy, J.F.: Singularity spectrum of multifractal functions involving oscillating singularities. Journal of Fourier Analysis and Applications 4(2), 159–174 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Benassi, A., Cohen, S., Istas, J., Jaffard, S.: Identification of filtered white noises. Stochastic Processes and their Applications 75(1), 31–49 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. American Mathematical Society (1996)Google Scholar
  14. 14.
    Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Transactions on Information Theory 38(2), 617–643 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bigot, J.: Automatic landmark registration of 1d curves. In: Recent advances and trends in nonparametric statistics, pp. 479–496. Elsevier, Amsterdam (2003)CrossRefGoogle Scholar
  16. 16.
    Deguy, S., Debain, C., Benassi, A.: Classification of texture images using multi-scale statistical estimators of fractal parameters. In: British Machine Vision Conference, pp. 192–201 (2000)Google Scholar
  17. 17.
    Kaplan, L.M., Kuo, C.C.: Texture roughness analysis and synthesis via extended self-similar model. IEEE Transactions on PAMI 17(11), 1043–1056 (1995)CrossRefGoogle Scholar
  18. 18.
    Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Transactions on PAMI 26(5), 530–549 (2004)CrossRefGoogle Scholar
  19. 19.
    Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for objet detection. IEEE Transactions on PAMI 30(1), 36–51 (2008)CrossRefGoogle Scholar
  20. 20.
    Brown, M., Lowe, D.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74(1), 59–73 (2007)CrossRefGoogle Scholar
  21. 21.
    Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Transactions on PAMI 14(7), 710–732 (1992)CrossRefGoogle Scholar
  22. 22.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on PAMI 8(6), 679–698 (1986)CrossRefGoogle Scholar
  23. 23.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christophe Damerval
    • 1
  • Sylvain Meignen
    • 2
  1. 1.Dept. of Computer ScienceKatholieke Universiteit LeuvenBelgium
  2. 2.Laboratoire Jean Kuntzmann (LJK)University of GrenobleFrance

Personalised recommendations