Skip to main content

Image Denoising by Harmonic Mean Curvature Flow

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

  • 2947 Accesses

Abstract

We propose a noise-removal method for vector-valued images by considering the negative gradient flow (the biharmonic map heat flow) of the intrinsic Bi-energy on Riemannian manifold of non-positive curvature. This method represents a natural generalization of both harmonic maps and minimal immersions. It is derived by finding the critical point of the variational problem associated to the integral of the squared norm of the tension-field (Bi-harmonic map) or of the mean curvature vector field (Bi-minimal immersion). In local coordinates, this method yields a fourth order non-linear system of PDE’s that we, numerically, solve by an explicit finite difference method. Experiments on real color-image endowed with the Helmholtz and Stiles metrics show that the proposed method is effective, accurate and highly robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barros, M., Garay, O.J.: On Submanifolds with Harmonic Mean Curvature. Proceedings of the American Mathematical Society 123(8) (August 1995)

    Google Scholar 

  2. Blaschke, W.: Vörlesungen über Differential Geometrie III. Springer, Berlin (1929)

    Google Scholar 

  3. Buchsbaum, G., Gottschalk, A.: Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. R. Soc. Lond. B (220), 89–113 (1983)

    Google Scholar 

  4. Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17, 169–188 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design 21(5), 427–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces and Free Boundaries 6(3), 361–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Mah. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eliasson, H.I.: Introduction to global calculus of variations. In: Global analysis and its applications, IAEA, Vienna, vol. II, pp. 113–135 (1974)

    Google Scholar 

  9. Friesecke, G., James, R.D., Muller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 17(11), 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 2nd edn. Springer, Heidelberg (1990)

    Book  MATH  Google Scholar 

  11. Germain, S.: Recherches sur la théorie des surfaces élastiques. Courcier, Paris (1821)

    Google Scholar 

  12. Hawking, S.W.: Gravitational radiation in an expanding universe. J. Mat. Phys. 9, 598–604 (1968)

    Article  Google Scholar 

  13. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Nat. forsch. A C28, 693–703 (1973)

    Google Scholar 

  14. von Helmholtz, H.: Handbuch der Physiologischen Optik. Voss, Hamburg (1896)

    MATH  Google Scholar 

  15. Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int. Math. Res. Not. 1997(20), 1045–1058 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas. Chin. Annals Math. A 7, 389–402 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Jost, J.: Riemannian Geometry and Geometric Analysis, 2nd edn. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  18. Kimmel, R.: A natural norm for color processing. In: Chin, R., Pong, T.-C. (eds.) ACCV 1998. LNCS, vol. 1351, pp. 88–95. Springer, Heidelberg (1997)

    Google Scholar 

  19. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on images processing 12, 1579–1590 (2003)

    Article  MATH  Google Scholar 

  20. MacAdam, D.L.: Visual sensitivity to color differences in daylight. J. Opt. Soc. Am. 32, 247 (1942)

    Article  Google Scholar 

  21. Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds. Revista de la Unión Mathemática Argentina 47(2) (2006)

    Google Scholar 

  22. Olischlager, N., Rumpf, M.: A two step time discretization of Willmore flow. In: 21st Chemnitz FEM Symposium (2008)

    Google Scholar 

  23. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schroedinger, E.: Grundlinien einer theorie de farbenmetrik in tagessehen. Ann. Physik 63, 481 (1920)

    Article  Google Scholar 

  25. Sochen, N., Zeevi, Y.: Using Vos-Walraven line element for Beltrami flow in color images. EE-Technion and TAU HEP report Technion and Tel-Aviv University (1992)

    Google Scholar 

  26. Stiles, W.S., Wyszecki, G.: Color Science, Concepts and Methods, Quantitative Data and Formulae. John Wiley & Sons, Inc., Chichester (2000)

    Google Scholar 

  27. Thomsen, G.: Über konforme Geometrie, I. Grundlagen der konformen Flächentheorie. Abh. Math. Semin. Univ. Hamburg, 31–56 (1923)

    Google Scholar 

  28. Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proceeding of the SIGGRAPH annual conference on Computer Graphics, Los Angeles, CA USA, August 1999, pp. 83–90 (1999)

    Google Scholar 

  29. Vos, J.J., Walraven, P.L.: An analytical description of the line element in the zone-fluctuation model of colour vision II. The derivative of the line element. Vision Research (12), 1345–1365 (1972)

    Google Scholar 

  30. Wei, G.: Generalized Perona-Malik equation for image processing. IEEE Signal Processing Letters 6(7), 165–167 (1999)

    Article  Google Scholar 

  31. Weickert, J.: Anisotropic diffusion in image processing. Teubner (1998)

    Google Scholar 

  32. Weiner, J.L.: On a problem of Chen, Willmore et Alia. Indiana University Math. J. (27), 19–35 (1978)

    Google Scholar 

  33. Willmore, T.J.: Note on embedded surfaces. An. Stiint. Univ. Al. I. Cuza Iasi., Ser. Noua, Mat. 11B, 493–496 (1965)

    MathSciNet  MATH  Google Scholar 

  34. Willmore, T.J.: Riemannian Geometry. Owford Science Publications (1993)

    Google Scholar 

  35. You, Y.L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing 10(9), 1723–1730 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zéraï, M. (2009). Image Denoising by Harmonic Mean Curvature Flow. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics