Quantification of Bone Remodeling in SRμCT Images of Implants

  • Hamid Sarve
  • Joakim Lindblad
  • Carina B. Johansson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)


For quantification of bone remodeling around implants, we combine information obtained by two modalities: 2D histological sections imaged in light microscope and 3D synchrotron radiation-based computed microtomography, SRμCT. In this paper, we present a method for segmenting SRμCT volumes. The impact of shading artifact at the implant interface is reduced by modeling the artifact. The segmentation is followed by quantitative analysis. To facilitate comparison with existing results, the quantification is performed on a registered 2D slice from the volume, which corresponds to a histological section from the same sample. The quantification involves measurements of bone area and bone-implant contact percentages.

We compare the results obtained by the proposed method on the SRμCT data with manual measurements on the histological sections and discuss the advantages of including SRμCT data in the analysis.


Bone Remodel Linear Discriminant Analysis Histological Section Bone Area Computer Tomography Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Donath, K.: Die trenn-dunnschliffe-technik zur herstellung histologischer präparate von nicht schneidbaren geweben und materialien. Der Präparator 34, 197–206 (1988)Google Scholar
  2. 2.
    Sarve, H., et al.: Quantification of Bone Remodeling in the Proximity of Implants. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 253–260. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Sarve, H., et al.: Registration of 2D Histological Images of Bone Implants with 3D SRuCT Volumes. In: Bebis, G., et al. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 1081–1090. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Siverigh, G.J., Elliot, P.J.: Interactive region and volume growing for segmenting volumes in mr and ct images. Med. Informatics 19, 71–80 (1994)CrossRefGoogle Scholar
  5. 5.
    Elmoutaouakkil, A., et al.: Segmentation of Cancellous Bone From High-Resolution Computed Tomography Images: Influence on Trabecular Bone Measurements. IEEE Trans. on medical imaging 21 (2002)Google Scholar
  6. 6.
    Waarsing, J.H., Day, J.S., Weinans, H.: An improved segmentation method for in vivo uct imaging. Journal of Bone and Mineral Research 19 (2004)Google Scholar
  7. 7.
    Barrett, J.F., Keat, N.: Artifacts in CT: Recognition and avoidance. Radio Graphics 24, 1679–1691 (2004)Google Scholar
  8. 8.
    Van de Casteele, E., et al.: A model-based correction method for beam hardening in X-Ray microtomography. Journ. of X-Ray Science and Technology 12, 43–57 (2004)Google Scholar
  9. 9.
    Johansson, C., Morberg, P.: Cutting directions of bone with biomaterials in situ does influence the outcome of histomorphometrical quantification. Biomaterials 16, 1037–1039 (1995)CrossRefGoogle Scholar
  10. 10.
    Smith, S., Brady, J.: SUSAN – a new approach to low level image processing. International Journal of Computer Vision 23, 45–78 (1997)CrossRefGoogle Scholar
  11. 11.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 62–66 (1979)CrossRefGoogle Scholar
  12. 12.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  13. 13.
    Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice-Hall, Englewood Cliffs (1998)zbMATHGoogle Scholar
  14. 14.
    Johansson, C.: On tissue reactions to metal implants. PhD thesis, Department of Biomaterials / Handicap Research, Göteborg University, Sweden (1991)Google Scholar
  15. 15.
    Koplowitz, J., Bruckstein, A.M.: Design of perimeter estimators for digized planar shapes. Trans. on PAMI 11, 611–622 (1989)CrossRefGoogle Scholar
  16. 16.
    Spearman, C.: The proof and measurement of association between two things. The American Journal of Psychology 100, 447–471 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hamid Sarve
    • 1
  • Joakim Lindblad
    • 1
  • Carina B. Johansson
    • 2
  1. 1.Centre for Image AnalysisSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of Clinical MedicineÖrebro UniversityÖrebroSweden

Personalised recommendations