Advertisement

Segmentation of Touching Cell Nuclei Using a Two-Stage Graph Cut Model

  • Ondřej Daněk
  • Pavel Matula
  • Carlos Ortiz-de-Solórzano
  • Arrate Muñoz-Barrutia
  • Martin Maška
  • Michal Kozubek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)

Abstract

Methods based on combinatorial graph cut algorithms received a lot of attention in the recent years for their robustness as well as reasonable computational demands. These methods are built upon an underlying Maximum a Posteriori estimation of Markov Random Fields and are suitable to solve accurately many different problems in image analysis, including image segmentation. In this paper we present a two-stage graph cut based model for segmentation of touching cell nuclei in fluorescence microscopy images. In the first stage voxels with very high probability of being foreground or background are found and separated by a boundary with a minimal geodesic length. In the second stage the obtained clusters are split into isolated cells by combining image gradient information and incorporated a priori knowledge about the shape of the nuclei. Moreover, these two qualities can be easily balanced using a single user parameter. Preliminary tests on real data show promising results of the method.

Keywords

Hard Constraint Background Segmentation Biomedical Image Analysis Regional Penalty Maximum Likelihood Estimation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pratt, W.K.: Digital Image Processing. Wiley, Chichester (1991)zbMATHGoogle Scholar
  2. 2.
    Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ortiz de Solórzano, C., Malladi, R., Leliévre, S.A., Lockett, S.J.: Segmentation of nuclei and cells using membrane related protein markers. Journal of Microscopy 201, 404–415 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Malpica, N., Ortiz de Solórzano, C., Vaquero, J.J., Santos, A., Lockett, S.J., Vallcorba, I., García-Sagredo, J.M., Pozo, F.d.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28, 289–297 (1997)CrossRefGoogle Scholar
  5. 5.
    Nilsson, B., Heyden, A.: Segmentation of dense leukocyte clusters. In: Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 221–227 (2001)Google Scholar
  6. 6.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: IEEE International Conference on Computer Vision, July 2001, vol. 1, pp. 105–112 (2001)Google Scholar
  7. 7.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  8. 8.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 648–655. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  10. 10.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  11. 11.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: IEEE International Conference on Computer Vision, vol. 1, pp. 26–33 (2003)Google Scholar
  13. 13.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ondřej Daněk
    • 1
  • Pavel Matula
    • 1
  • Carlos Ortiz-de-Solórzano
    • 2
  • Arrate Muñoz-Barrutia
    • 2
  • Martin Maška
    • 1
  • Michal Kozubek
    • 1
  1. 1.Centre for Biomedical Image Analysis, Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain

Personalised recommendations