On the Spatial Distribution of Local Non-parametric Facial Shape Descriptors

  • Olli Lahdenoja
  • Mika Laiho
  • Ari Paasio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)


In this paper we present a method to form pattern specific facial shape descriptors called basis-images for non-parametric LBPs (Local Binary Patterns) and some other similar face descriptors such as Modified Census Transform (MCT) and LGBP (Local Gabor Binary Pattern). We examine the distribution of different local descriptors among the facial area from which some useful observations can be made. In addition, we test the discriminative power of the basis-images in a face detection framework for the basic LBPs. The detector is fast to train and uses only a set of strictly frontal faces as inputs, operating without non-faces and bootstrapping. The face detector performance is tested with the full CMU+MIT database.


  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–984 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Tenth IEEE International Conference on Computer Vision, ICCV, October 2005, vol. 1, pp. 786–791 (2005)Google Scholar
  4. 4.
    Froba, B., Ernst, A.: Face detection with the modified census transform. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition, May 2004, pp. 91–96 (2004)Google Scholar
  5. 5.
    Jin, H., Liu, Q., Tang, X., Lu, H.: Learning Local Descriptors for Face Detection. In: IEEE International Conference on Multimedia and Expo., ICME, July 2005, pp. 928–931 (2005)Google Scholar
  6. 6.
    Hadid, A., Pietikainen, M., Ahonen, T.: A Discriminative Feature Space for Detecting and Recognizing Faces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, Washington, DC, vol. 2, pp. 797–804 (2004)Google Scholar
  7. 7.
    Feng, X., Pietikainen, M., Hadid, A.: Facial expression recognition with local binary patterns and linear programming. Pattern Recognition and Image Analysis 15(2), 546–548 (2005)Google Scholar
  8. 8.
    Ruiz-del-Solar, J., Quinteros, J.: Illumination Compensation and Normalization in Eigenspace-based Face Recognition: A comparative study of different pre-processing approaches. Pattern Recognition Letters 29(14), 1966–1978 (2008)CrossRefGoogle Scholar
  9. 9.
    Ahonen, T., Pietikainen, M.: Image description using joint distribution of filter bank responses. Pattern Recognition Letters 30(4), 368–376 (2009)CrossRefGoogle Scholar
  10. 10.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: FERET Database and Evaluation Procedure for Face Recognition Algorithms. Image and Vision Computing 16, 295–306 (1998)CrossRefGoogle Scholar
  11. 11.
    Yang, H., Wang, Y.: A LBP-based Face Recognition Method with Hamming Distance Constraint. In: Proceedings of Fourth International Conference on Image and Graphics (ICIG 2007), pp. 645–649 (2007)Google Scholar
  12. 12.
    Lahdenoja, O., Laiho, M., Paasio, A.: Reducing the feature vector length in local binary pattern based face recognition. In: IEEE International Conference on Image Processing, ICIP, September 2005, vol. 2, pp. 914–917 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olli Lahdenoja
    • 1
    • 2
  • Mika Laiho
    • 1
  • Ari Paasio
    • 1
  1. 1.Department of Information TechnologyUniversity of TurkuTurkuFinland
  2. 2.Turku Centre for Computer Science (TUCS)Finland

Personalised recommendations