Multi-frequency Phase Unwrapping from Noisy Data: Adaptive Local Maximum Likelihood Approach

  • José Bioucas-Dias
  • Vladimir Katkovnik
  • Jaakko Astola
  • Karen Egiazarian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)


The paper introduces a new approach to absolute phase estimation from frequency diverse wrapped observations. We adopt a discontinuity preserving nonparametric regression technique, where the phase is reconstructed based on a local maximum likelihood criterion. It is shown that this criterion, applied to the multifrequency data, besides filtering the noise, yields a 2πQ-periodic solution, where Q > 1 is an integer. The filtering algorithm is based on local polynomial (LPA) approximation for the design of nonlinear filters (estimators) and the adaptation of these filters to the unknown spatially smoothness of the absolute phase. Depending on the value of Q and of the original phase range, we may obtain complete or partial phase unwrapping. In the latter case, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [1]. Simulations give evidence that the proposed method yields state-of-the-art performance, enabling phase unwrapping in extraordinary difficult situations when all other algorithms fail.


Interferometric imaging phase unwrapping diversity local maximum-likelihood adaptive filtering 


  1. 1.
    Bioucas-Dias, J., Valadão, G.: Phase unwrapping via graph cuts. IEEE Trans. Image Processing 16(3), 684–697 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Graham, L.: Synthetic interferometer radar for topographic mapping. Proceeding of the IEEE 62(2), 763–768 (1974)CrossRefGoogle Scholar
  3. 3.
    Ghiglia, D., Pritt, M.: Two-Dimensional Phase Unwrapping. In: Theory, Algorithms, and Software. John Wiley & Sons, New York (1998)Google Scholar
  4. 4.
    Zebker, H., Goldstein, R.: Topographic mapping from interferometric synthetic aperture radar. Journal of Geophysics Research 91(B5), 4993–4999 (1986)CrossRefGoogle Scholar
  5. 5.
    Patil, A., Rastogi, P.: Moving ahead with phase. Optics and Lasers in Engineering 45, 253–257 (2007)CrossRefGoogle Scholar
  6. 6.
    Goldstein, R., Zebker, H., Werner, C.: Satellite radar interferometry: Two-dimensional phase unwrapping. In: Symposium on the Ionospheric Effects on Communication and Related Systems. Radio Science, vol. 23, pp. 713–720 (1988)Google Scholar
  7. 7.
    Bioucas-Dias, J., Leitao, J.: The M algorithm: a method for interferometric image reconstruction in SAR/SAS. IEEE Trans. Image Processing 11(4), 408–422 (2002)CrossRefGoogle Scholar
  8. 8.
    Yun, H.Y., Hong, C.K., Chang, S.W.: Least-square phase estimation with multiple parameters in phase-shifting electronic speckle pattern interferometry. J. Opt. Soc. Am. A 20, 240–247 (2003)CrossRefGoogle Scholar
  9. 9.
    Kemao, Q.: Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations. Opt. Lasers Eng. 45, 304–317 (2007)CrossRefGoogle Scholar
  10. 10.
    Katkovnik, V., Astola, J., Egiazarian, K.: Phase local approximation (PhaseLa) technique for phase unwrap from noisy data. IEEE Trans. on Image Processing 46(6), 833–846 (2008)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Katkovnik, V., Egiazarian, K., Astola, J.: Local Approximation Techniques in Signal and Image Processing. SPIE Press, Bellingham (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Servin, M., Marroquin, J.L., Malacara, D., Cuevas, F.J.: Phase unwrapping with a regularized phase-tracking system. Applied Optics 37(10), 1917–1923 (1998)CrossRefGoogle Scholar
  13. 13.
    Pascazio, V., Schirinzi, G.: Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters. IEEE Transactions on Image Processing 11(12), 1478–1489 (2002)CrossRefGoogle Scholar
  14. 14.
    Servin, M., Cuevas, F.J., Malacara, D., Marroguin, J.L., Rodriguez-Vera, R.: Phase unwrapping through demodulation by use of the regularized phase-tracking technique. Appl. Opt. 38, 1934–1941 (1999)CrossRefGoogle Scholar
  15. 15.
    Servin, M., Kujawinska, M.: Modern fringe pattern analysis in interferometry. In: Malacara, D., Thompson, B.J. (eds.) Handbook of Optical Engineering, ch. 12, pp. 373–426, Dekker (2001)Google Scholar
  16. 16.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (2002)Google Scholar
  17. 17.
    Xia, X.-G., Wang, G.: Phase unwrapping and a robust chinese remainder theorem. IEEE Signal Processing Letters 14(4), 247–250 (2007)CrossRefGoogle Scholar
  18. 18.
    McClellan, J.H., Rader, C.M.: Number Theory in Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1979)zbMATHGoogle Scholar
  19. 19.
    Goldreich, O., Ron, D., Sudan, M.: Chinese remaindering with errors. IEEE Trans. Inf. Theory 46(7), 1330–1338 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Bioucas-Dias, J., Katkovnik, V., Astola, J., Egiazarian, K.: Absolute phase estimation: adaptive local denoising and global unwrapping. Applied Optics 47(29), 5358–5369 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • José Bioucas-Dias
    • 1
  • Vladimir Katkovnik
    • 2
  • Jaakko Astola
    • 2
  • Karen Egiazarian
    • 2
  1. 1.Instituto de Telecomunicações, Instituto Superior TécnicoTULisbonLisboaPortugal
  2. 2.Signal Processing InstituteUniversity of Technology of TampereTampereFinland

Personalised recommendations