Advertisement

A New Triangulation-Based Method for Disparity Estimation in Image Sequences

  • Dimitri Bulatov
  • Peter Wernerus
  • Stefan Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)

Abstract

We give a simple and efficient algorithm for approximating computation of disparities in a pair of rectified frames of an image sequence. The algorithm consists of rendering a sparse set of correspondences, which are triangulated, expanded and corrected in the areas of occlusions and homogeneous texture by a color distribution algorithm. The obtained approximations of the disparity maps are refined by a semi-global algorithm. The algorithm was tested for three data sets with rather different data quality. The results of the performance of our method are presented and areas of applications and future research are outlined.

Keywords

Color dense depth map disparity map histogram matching reconstruction semi-global surface triangulation 

References

  1. 1.
    Baker, S., Szeliski, R., Anandan, P.: A layered approach to stereo reconstruction. In: Computer Vision and Pattern Recognition (CVPR), pp. 434–441 (1998)Google Scholar
  2. 2.
    Bleyer, M., Gelautz, M.: Simple but Effective Tree Structures for Dynamic Programming-based Stereo Matching. In: International Conference on Computer Vision Theory and Applications (VISAPP), (2), pp. 415–422 (2008)Google Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: A variable window approach to early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 20(12), 1283–1294 (1998)CrossRefGoogle Scholar
  4. 4.
    Canny, J.A.: Computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 8(6), 679–698 (1986)CrossRefGoogle Scholar
  5. 5.
    Cha, S.-H., Srihari, S.N.: On measuring the distance between histograms. Pattern Recognition 35(6), 1355–1370 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Deans, S.: The Radon Transform and Some of Its Applications. Wiley, New York (1983)zbMATHGoogle Scholar
  7. 7.
    Furukawa, Y., Ponce, J.: Accurate, Dense, and Robust Multi-View Stereopsis. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, USA, pp. 1–8 (2008)Google Scholar
  8. 8.
    Harris, C.G., Stevens, M.J.: A Combined Corner and Edge Detector. In: Proc. of 4th Alvey Vision Conference, pp. 147–151 (1998)Google Scholar
  9. 9.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  10. 10.
    Hirschmüller, H.: Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2), San Diego, USA, pp. 807–814 (2005)Google Scholar
  11. 11.
    Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: Proc. of International Conference on Computer Vision (ICCV), (2), pp. 1033–1040 (2003)Google Scholar
  12. 12.
    Klaus, A., Sormann, M., Karner, K.: Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure. In: Proc. of International Conference on Pattern Recognition, (3), pp. 15–18 (2006)Google Scholar
  13. 13.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc. of International Conference on Computer Vision (ICCV), (2), pp. 508–515 (2001)Google Scholar
  14. 14.
    Loop, C., Zhang, Z.: Computing rectifying homographies for stereo vision. Technical Report MSR-TR-99-21, Microsoft Research (1999)Google Scholar
  15. 15.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)CrossRefGoogle Scholar
  16. 16.
    Matas, J., Chum, O.: Randomized Ransac with T d, d-test. Image and Vision Computing 22(10), 837–842 (2004)CrossRefGoogle Scholar
  17. 17.
    Mayer, H., Ton, D.: 3D Least-Squares-Based Surface Reconstruction. In: Photogrammetric Image Analysis (PIA 2007), (3), Munich, Germany, pp. 69–74 (2007)Google Scholar
  18. 18.
    Morris, D., Kanade, T.: Image-Consistent Surface Triangulation. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (1), Los Alamitos, pp. 332–338 (2000)Google Scholar
  19. 19.
    Nistér, D.: Automatic dense reconstruction from uncalibrated video sequences. PhD Thesis, Royal Institute of Technology KTH, Stockholm, Sweden (2001)Google Scholar
  20. 20.
    Scharstein, D., Szeliski, R.: Stereo matching with nonlinear diffusion. International Journal of Computer Vision (IJCV) 28(2), 155–174 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision (IJCV) 47(1), 7–42 (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Stewart, C.V., Dyer, C.R.: The Trinocular General Support Algorithm: A Three-camera Stereo Algorithm For Overcoming Binocular Matching Errors. In: Second International Conference on Computer Vision (ICCV), pp. 134–138 (1988)Google Scholar
  23. 23.
    Tian, Q., Huhns, M.N.: Algorithms for subpixel registration. In: Graphical Models and Image Processing (CVGIP), vol. 35, pp. 220–233 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dimitri Bulatov
    • 1
  • Peter Wernerus
    • 1
  • Stefan Lang
    • 1
  1. 1.Research Institute for Optronics and Pattern RecognitionEttlingenGermany

Personalised recommendations