Galaxy Decomposition in Multispectral Images Using Markov Chain Monte Carlo Algorithms
Conference paper
Abstract
Astronomers still lack a multiwavelength analysis scheme for galaxy classification. In this paper we propose a way of analysing multispectral observations aiming at refining existing classifications with spectral information. We propose a global approach which consists of decomposing the galaxy into a parametric model using physically meaningful structures. Physical interpretation of the results will be straightforward even if the method is limited to regular galaxies. The proposed approach is fully automatic and performed using Markov Chain Monte Carlo (MCMC) algorithms. Evaluation on simulated and real 5-band images shows that this new method is robust and accurate.
Keywords
Bayesian inference MCMC multispectral image processing galaxy classification Download
to read the full conference paper text
References
- 1.De Vaucouleurs, G.: Classification and Morphology of External Galaxies. Handbuch der Physik 53, 275 (1959)CrossRefGoogle Scholar
- 2.Yagi, M., Nakamura, Y., Doi, M., Shimasaku, K., Okamura, S.: Morphological classification of nearby galaxies based on asymmetry and luminosity concentration. Monthly Notices of Roy. Astr. Soc. 368, 211–220 (2006)CrossRefGoogle Scholar
- 3.Petrosian, V.: Surface brightness and evolution of galaxies. Astrophys. J. Letters 209, L1–L5 (1976)CrossRefGoogle Scholar
- 4.Abraham, R.G., Valdes, F., Yee, H.K.C., van den Bergh, S.: The morphologies of distant galaxies. 1: an automated classification system. Astrophys. J. 432, 75–90 (1994)CrossRefGoogle Scholar
- 5.Conselice, C.J.: The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories. Astrophys. J. Suppl. S. 147, 1–28 (2003)CrossRefGoogle Scholar
- 6.Kelly, B.C., McKa, T.A.: Morphological Classification of Galaxies by Shapelet Decomposition in the Sloan Digital Sky Survey. Astron. J. 127, 625–645 (2004)CrossRefGoogle Scholar
- 7.Baillard, A., Bertin, E., Mellier, Y., McCracken, H.J., Géraud, T., Pelló, R., Leborgne, F., Fouqué, P.: Project EFIGI: Automatic Classification of Galaxies. In: Astron. Soc. Pac. Conf. ADASS XV, vol. 351, p. 236 (2006)Google Scholar
- 8.Allen, P.D., Driver, S.P., Graham, A.W., Cameron, E., Liske, J., de Propris, R.: The Millennium Galaxy Catalogue: bulge-disc decomposition of 10095 nearby galaxies. Monthly Notices of Roy. Astr. Soc. 371, 2–18 (2006)CrossRefGoogle Scholar
- 9.Tsalmantza, P., Kontizas, M., Bailer-Jones, C.A.L., Rocca-Volmerange, B., Korakitis, R., Kontizas, E., Livanou, E., Dapergolas, A., Bellas-Velidis, I., Vallenari, A., Fioc, M.: Towards a library of synthetic galaxy spectra and preliminary results of classification and parametrization of unresolved galaxies for Gaia: Astron. Astrophys. 470, 761–770 (2007)Google Scholar
- 10.Bazell, D.: Feature relevance in morphological galaxy classification. Monthly Notices of Roy. Astr. Soc. 316, 519–528 (2000)CrossRefGoogle Scholar
- 11.Kelly, B.C., McKay, T.A.: Morphological Classification of Galaxies by Shapelet Decomposition in the Sloan Digital Sky Survey. II. Multiwavelength Classification. Astron. J. 129, 1287–1310 (2005)Google Scholar
- 12.Lauger, S., Burgarella, D., Buat, V.: Spectro-morphology of galaxies: A multi-wavelength (UV-R) classification method. Astron. Astrophys. 434, 77–87 (2005)CrossRefGoogle Scholar
- 13.Simard, L., Willmer, C.N.A., Vogt, N.P., Sarajedini, V.L., Phillips, A.C., Weiner, B.J., Koo, D.C., Im, M., Illingworth, G.D., Faber, S.M.: The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip. Astrophys. J. Suppl. S. 142, 1–33 (2002)CrossRefGoogle Scholar
- 14.de Souza, R.E., Gadotti, D.A., dos Anjos, S.: BUDDA: A New Two-dimensional Bulge/Disk Decomposition Code for Detailed Structural Analysis of Galaxies. Astrophys. J. Suppl. S. 153, 411–427 (2004)CrossRefGoogle Scholar
- 15.Peng, C.Y., Ho, L.C., Impey, C.D., Rix, H.-W.: Detailed Structural Decomposition of Galaxy Images. Astron. J. 124, 266–293 (2002)CrossRefGoogle Scholar
- 16.Sérsic, J.L.: Atlas de galaxias australes. Cordoba, Argentina: Observatorio Astronomico (1968)Google Scholar
- 17.Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo In Practice. Chapman & Hall/CRC, Washington (1996)MATHGoogle Scholar
- 18.Gilks, W.R., Roberts, G.O., Sahu, S.K.: Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statistical Assoc. 93, 1045–1054 (1998)CrossRefMATHMathSciNetGoogle Scholar
- 19.Roberts, G.O., Gilks, W.R.: Convergence of adaptive direction sampling. J. of Multivariate Ana. 49, 287–298 (1994)CrossRefMATHMathSciNetGoogle Scholar
- 20.Mazet, V., Brie, D., Idier, J.: Simulation of positive normal variables using several proposal distributions. In: IEEE Workshop on Statistical Sig. Proc., pp. 37–42 (2005)Google Scholar
- 21.Devroye, L.: Non-Uniforme Random Variate Generation. Springer, New York (1986)CrossRefMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2009