Segmentation, Tracking and Characterization of Solar Features from EIT Solar Corona Images

  • Vincent Barra
  • Véronique Delouille
  • Jean-Francois Hochedez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)

Abstract

With the multiplication of sensors and instruments, size, amount and quality of solar image data are constantly increasing, and analyzing this data requires defining and implementing accurate and reliable algorithms. In the context of solar features analysis, it is particularly important to accurately delineate their edges and track their motion, to estimate quantitative indices and analyse their evolution through time. Herein, we introduce an image processing pipeline that segment, track and quantify solar features from a set of multispectral solar corona images, taken with eit EIT instrument. We demonstrate the method on the automatic tracking of Active Regions from EIT images, and on the analysis of the spatial distribution of coronal bright points. The method is generic enough to allow the study of any solar feature, provided it can be segmented from EIT images or other sources.

Keywords

Segmentation tracking EIT Images 

References

  1. 1.
    Aboudarham, J., Scholl, I., Fuller, N.: Automatic detection and tracking of filaments for a solar feature database. Annales Geophysicae 26, 243–248 (2008)CrossRefGoogle Scholar
  2. 2.
    Barra, V., Delouille, V., Hochedez, J.F.: Segmentation of extreme ultraviolet solar images via multichannel Fuzzy Clustering Algorithm. Adv. Space Res. 42, 917–925 (2008)CrossRefGoogle Scholar
  3. 3.
    Barra, V., Delouille, V., Hochedez, J.F.: Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23. A&A (submitted)Google Scholar
  4. 4.
    Benkhalil, A., Zharkova, V., Zharkov, S., Ipson, S.: Proceedings of the AISB 2003 Symposium on Biologically-inspired Machine Vision, Theory and Application, ed. S. L. N. in Computer Science, pp. 66–73 (2003)Google Scholar
  5. 5.
    Berrili, F., Moro, D.D., Russo, S.: Spatial clustering of photospheric structures. The Astrophysical Journal 632, 677–683 (2005)CrossRefGoogle Scholar
  6. 6.
    Bezdek, J.C., Hall, L.O., Clark, M., Goldof, D., Clarke, L.P.: Medical image analysis with fuzzy models. Stat. Methods Med. Res. 6, 191–214 (1997)CrossRefGoogle Scholar
  7. 7.
    Bornmann, P., Winkelman, D., Kohl, T.: Automated solar image processing for flare forecasting. In: Proc. of the solar terrestrial predictions workshop, Hitachi, Japan, pp. 23–27 (1996)Google Scholar
  8. 8.
    Brajsa, R., Whöl, H., Vrsnak, B., Ruzdjak, V., Clette, F., Hochedez, J.F.: Solar differential rotation determined by tracing coronal bright points in SOHO-EIT images. Astronomy and Astrophysics 374, 309–315 (2001)Google Scholar
  9. 9.
    Brajsa, R., Wöhl, H., Vrsnak, B., Ruzdjak, V., Clette, F., Hochedez, J.F., Verbanac, G., Temmer, M.: Spatial Distribution and North South Asymmetry of Coronal Bright Points from Mid-1998 to Mid-1999. Solar Physics 231, 29–44 (2005)CrossRefGoogle Scholar
  10. 10.
    Delaboudinière, J.P., Artzner, G.E., Brunaud, J., et al.: EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission. Solar Physics 162, 291–312 (1995)CrossRefGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: Possibility theory, an approach to the computerized processing of uncertainty. Plenum Press (1985)Google Scholar
  12. 12.
    Fuller, N., Aboudarham, J., Bentley, R.D.: Filament Recognition and Image Cleaning on Meudon Hα Spectroheliograms. Solar Physics 227, 61–75 (2005)CrossRefGoogle Scholar
  13. 13.
    Hill, M., Castelli, V., Chu-Sheng, L.: Solarspire: querying temporal solar imagery by content. In: Proc. of the IEEE International Conference on Image Processing, pp. 834–837 (2001)Google Scholar
  14. 14.
    Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Sys. 1, 98–110 (1993)CrossRefGoogle Scholar
  15. 15.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereovision. In: Proc. Imaging Understanding Workshop, pp. 121–130 (1981)Google Scholar
  16. 16.
    Nieniewski, M.: Segmentation of extreme ultraviolet (SOHO) sun images by means of watershed and region growing. In: Wilson, A. (ed.) Proc. of the SOHO 11 Symposium on From Solar Min to Max: Half a Solar Cycle with SOHO, Noordwijk, pp. 323–326 (2002)Google Scholar
  17. 17.
    Ortiz, A.: Solar cycle evolution of the contrast of small photospheric magnetic elements. Advances in Space Research 35, 350–360 (2005)CrossRefGoogle Scholar
  18. 18.
    Pettauer, T., Brandt, P.: On novel methods to determine areas of sunspots from photoheliograms. Solar Physics 175, 197–203 (1997)CrossRefGoogle Scholar
  19. 19.
    Qahwaji, R.: The Detection of Filaments in Solar Images. In: Proc. of the Solar Image Recognition Workshop, ed. Brussels, Belgium (2003)Google Scholar
  20. 20.
    Sattarov, I., Pevtsov, A., Karachek, N.: Proc. of the International Astronomical Union, pp. 665–666. Cambridge University Press, Cambridge (2004)Google Scholar
  21. 21.
    Sobotka, M., Brandt, P.N., Simon, G.W.: Fine structures in sunspots. I. Sizes and lifetimes of umbral dots. Astronomy and astrophysics 2, 682–688 (1997)Google Scholar
  22. 22.
    Steinegger, M., Bonet, J., Vazquez, M.: Simulation of seeing influences on the photometric determination of sunspot areas. Solar Physics 171, 303–330 (1997)CrossRefGoogle Scholar
  23. 23.
    Steinegger, M., Bonet, J., Vazquez, M., Jimenez, A.: On the intensity thresholds of the network and plage regions. Solar Physics 177, 279–286 (1998)CrossRefGoogle Scholar
  24. 24.
    Veronig, A., Steinegger, M., Otruba, W.: Automatic Image Segmentation and Feature Detection in solar Full-Disk Images. In: Wilson, N.E.P.D.A. (ed.) Proc. of the 1st Solar and Space Weather Euroconference, Noordwijk, p. 455 (2000)Google Scholar
  25. 25.
    Wagstaff, K., Rust, D.M., LaBonte, B.J., Bernasconi, P.N.: Automated Detection and Characterization of Solar Filaments and Sigmoids. In: Proc. of the Solar image recognition workshop, ed. Brussels, Belgium (2003)Google Scholar
  26. 26.
    Worden, J., Woods, T., Neupert, W., Delaboudiniere, J.: Evolution of Chromospheric Structures: How Chromospheric Structures Contribute to the Solar He ii 30.4 Nanometer Irradiance and Variability. The Astrophysical Journal, 965–975 (1999)Google Scholar
  27. 27.
    Zharkov, S., Zharkova, V., Ipson, S., Benkhalil, A.: Automated Recognition of Sunspots on the SOHO/MDI White Light Solar Images. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS, vol. 3215, pp. 446–452. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vincent Barra
    • 1
  • Véronique Delouille
    • 2
  • Jean-Francois Hochedez
    • 2
  1. 1.LIMOS, UMR 6158AubièreFrance
  2. 2.Royal Observatory of BelgiumBrusselsBelgium

Personalised recommendations