Geometric Multispectral Camera Calibration

  • Johannes Brauers
  • Til Aach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)

Abstract

A large number of multispectral cameras uses optical bandpass filters to divide the electromagnetic spectrum into passbands. If the filters are placed between the sensor and the lens, the different thicknesses, refraction indices and tilt angles of the filters cause image distortions, which are different for each spectral passband. On the other hand, the lens also causes distortions which are critical in machine vision tasks. In this paper, we propose a method to calibrate the multispectral camera geometrically to remove all kinds of geometric distortions. To this end, the combination of the camera with each of the bandpass filters is considered as single camera system. The systems are then calibrated by estimation of the intrinsic and extrinsic camera parameters and geometrically merged via a homography. The experimental results show that our algorithm can be used to compensate for the geometric distortions of the lens and the optical bandpass filters simultaneously.

Keywords

Camera Calibration Multispectral Image Geometric Distortion Lens Distortion Reprojection Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yamaguchi, M., Haneishi, H., Ohyama, N.: Beyond Red-Green-Blue (RGB): Spectrum-based color imaging technology. Journal of Imaging Science and Technology 52(1), 010201–1–010201–15 (2008)Google Scholar
  2. 2.
    Luther, R.: Aus dem Gebiet der Farbreizmetrik. Zeitschrift für technische Physik 8, 540–558 (1927)Google Scholar
  3. 3.
    Hill, B., Vorhagen, F.W.: Multispectral image pick-up system, U.S.Pat. 5,319,472, German Patent P 41 19 489.6 (1991)Google Scholar
  4. 4.
    Tominaga, S.: Spectral imaging by a multi-channel camera. Journal of Electronic Imaging 8(4), 332–341 (1999)CrossRefGoogle Scholar
  5. 5.
    Burns, P.D., Berns, R.S.: Analysis multispectral image capture. In: IS&T Color Imaging Conference, Springfield, VA, USA, vol. 4, pp. 19–22 (1996)Google Scholar
  6. 6.
    Mansouri, A., Marzani, F.S., Hardeberg, J.Y., Gouton, P.: Optical calibration of a multispectral imaging system based on interference filters. SPIE Optical Engineering 44(2), 027004.1–027004.12 (2005)Google Scholar
  7. 7.
    Haneishi, H., Iwanami, T., Honma, T., Tsumura, N., Miyake, Y.: Goniospectral imaging of three-dimensional objects. Journal of Imaging Science and Technology 45(5), 451–456 (2001)Google Scholar
  8. 8.
    Brauers, J., Aach, T.: Longitudinal aberrations caused by optical filters and their compensation in multispectral imaging. In: IEEE International Conference on Image Processing (ICIP 2008), San Diego, CA, USA, pp. 525–528. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  9. 9.
    Brauers, J., Schulte, N., Aach, T.: Multispectral filter-wheel cameras: Geometric distortion model and compensation algorithms. IEEE Transactions on Image Processing 17(12), 2368–2380 (2008)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cappellini, V., Del Mastio, A., De Rosa, A., Piva, A., Pelagotti, A., El Yamani, H.: An automatic registration algorithm for cultural heritage images. In: IEEE International Conference on Image Processing, Genova, Italy, September 2005, vol. 2, pp. II-566–9 (2005)Google Scholar
  11. 11.
    Kern, J.: Reliable band-to-band registration of multispectral thermal imager data using multivariate mutual information and cyclic consistency. In: Proceedings of SPIE, November 2004, vol. 5558, pp. 57–68 (2004)Google Scholar
  12. 12.
    Helling, S., Seidel, E., Biehlig, W.: Algorithms for spectral color stimulus reconstruction with a seven-channel multispectral camera. In: IS&Ts Proc. 2nd European Conference on Color in Graphics, Imaging and Vision CGIV 2004, Aachen, Germany, April 2004, vol. 2, pp. 254–258 (2004)Google Scholar
  13. 13.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Gao, C., Ahuja, N.: Single camera stereo using planar parallel plate. In: Ahuja, N. (ed.) Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 108–111 (2004)Google Scholar
  15. 15.
    Gao, C., Ahuja, N.: A refractive camera for acquiring stereo and super-resolution images. In: Ahuja, N. (ed.) IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, vol. 2, pp. 2316–2323 (2006)Google Scholar
  16. 16.
    Bouguet, J.Y.: Camera Calibration Toolbox for MatlabGoogle Scholar
  17. 17.
    Brauers, J., Schulte, N., Bell, A.A., Aach, T.: Multispectral high dynamic range imaging. In: IS&T/SPIE Electronic Imaging, San Jose, California, USA, January 2008, vol. 6807 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Johannes Brauers
    • 1
  • Til Aach
    • 1
  1. 1.Institute of Imaging & Computer VisionRWTH Aachen UniversityAachenGermany

Personalised recommendations