Framework for Applying Full Reference Digital Image Quality Measures to Printed Images

  • Tuomas Eerola
  • Joni-Kristian Kämäräinen
  • Lasse Lensu
  • Heikki Kälviäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)


Measuring visual quality of printed media is important as printed products play an essential role in every day life, and for many “vision applications”, printed products still dominate the market (e.g., newspapers). Measuring visual quality, especially the quality of images when the original is known (full-reference), has been an active research topic in image processing. During the course of work, several good measures have been proposed and shown to correspond with human (subjective) evaluations. Adapting these approaches to measuring visual quality of printed media has been considered only rarely and is not straightforward. In this work, the aim is to reduce the gap by presenting a complete framework starting from the original digital image and its hard-copy reproduction to a scanned digital sample which is compared to the original reference image by using existing quality measures. The proposed framework is justified by experiments where the measures are compared to a subjective evaluation performed using the printed hard copies.


  1. 1.
    Daly, S.: Visible differences predictor: an algorithm for the assessment of image fidelity. In: Proc. SPIE, San Jose, USA. Human Vision, Visual Processing, and Digital Display III, vol. 1666, pp. 2–15 (1992)Google Scholar
  2. 2.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  3. 3.
    Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Transactions On Image Processing 15(2), 430–444 (2006)CrossRefGoogle Scholar
  4. 4.
    Sadovnikov, A., Salmela, P., Lensu, L., Kamarainen, J., Kalviainen, H.: Mottling assessment of solid printed areas and its correlation to perceived uniformity. In: 14th Scandinavian Conference of Image Processing, Joensuu, Finland, pp. 411–418 (2005)Google Scholar
  5. 5.
    Vartiainen, J., Sadovnikov, A., Kamarainen, J.K., Lensu, L., Kalviainen, H.: Detection of irregularities in regular patterns. Machine Vision and Applications 19(4), 249–259 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Sheikh, H.R., Bovik, A.C., Cormack, L.: No-reference quality assessment using natural scene statistics: JPEG 2000. IEEE Transactions on Image Processing 14(11), 1918–1927 (2005)CrossRefGoogle Scholar
  7. 7.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions On Image Processing 15(11), 3440–3451 (2006)CrossRefGoogle Scholar
  8. 8.
    Wyszecki, G., Stiles, W.S.: Color science: concepts and methods, quantitative data and formulae, 2nd edn. Wiley, Chichester (2000)Google Scholar
  9. 9.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74(1), 59–73 (2007)CrossRefGoogle Scholar
  11. 11.
    Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Graphics and Image Processing 24(6) (1981)Google Scholar
  12. 12.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE-TPAMI 13(4), 376–380 (1991)CrossRefGoogle Scholar
  13. 13.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  14. 14.
    Avcibaş, I., Sankur, B., Sayood, K.: Statistical evaluation of image quality measures. Journal of Electronic Imaging 11(2), 206–223 (2002)CrossRefGoogle Scholar
  15. 15.
    Oittinen, P., Halonen, R., Kokkonen, A., Leisti, T., Nyman, G., Eerola, T., Lensu, L., Kälviäinen, H., Ritala, R., Pulla, J., Mettänen, M.: Framework for modelling visual printed image quality from paper perspective. In: SPIE/IS&T Electronic Imaging 2008, Image Quality and System Performance V, San Jose, USA (2008)Google Scholar
  16. 16.
    Eerola, T., Kamarainen, J.K., Leisti, T., Halonen, R., Lensu, L., Kälviäinen, H., Nyman, G., Oittinen, P.: Is there hope for predicting human visual quality experience? In: Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, Singapore (2008)Google Scholar
  17. 17.
    Eerola, T., Kamarainen, J.K., Leisti, T., Halonen, R., Lensu, L., Kälviäinen, H., Oittinen, P., Nyman, G.: Finding best measurable quantities for predicting human visual quality experience. In: Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, Singapore (2008)Google Scholar
  18. 18.
    van der Weken, D., Nachtegael, M., Kerre, E.E.: Using similarity measures and homogeneity for the comparison of images. Image and Vision Computing 22(9), 695–702 (2004)CrossRefGoogle Scholar
  19. 19.
    Lubin, J., Fibush, D.: Contribution to the IEEE standards subcommittee: Sarnoff JND vision model (August 1997)Google Scholar
  20. 20.
    Watson, A.B.: DCTune: A technique for visual optimization of DCT quantization matrices for individual images. Society for Information Display Digest of Technical Papers XXIV, 946–949 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tuomas Eerola
    • 1
  • Joni-Kristian Kämäräinen
    • 1
  • Lasse Lensu
    • 1
  • Heikki Kälviäinen
    • 1
  1. 1.Machine Vision and Pattern Recognition Research Group (MVPR) MVPR/Computational Vision Group, Kouvola Department of Information TechnologyLappeenranta University of Technology (LUT)Finland

Personalised recommendations