Skip to main content

Fully Developed Turbulence with Diminishing Mean Vortex Stretching and Reduced Intermittency

  • Conference paper
Progress in Turbulence III

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 131))

  • 1579 Accesses

Abstract

Fluid turbulence determines drag characteristics of land/air/seaborne vehicles, mixing and reaction rates in chemical reactors, industrial mixers, burners, and complex non-equilibrium phenomena such as flame reignition and extinction. It is central to weather and environmental predictions, cloud precipitation and albido, atmospheric and oceanic transport and ocean-atmosphere interactions. Central to three-dimensional turbulent fluid flows is the vortex-stretching mechanism which generates the multitude of eddy sizes that make simulations prohibitive. Studies aiming at understanding the intrinsic dynamics of fully developed turbulence have concentrated on homogeneous isotropic turbulence in the wind tunnel [1, 2, 3], where the turbulence dynamics result purely from the vortex-stretching mechanism in isolation. Here we report the discovery of a new type of homogeneous isotropic three-dimensional fluid turbulence where the average vortex stretching diminishes and the level of small-scale intermittency remains constant as the turbulence intensifies. Hence, the deepest of all turbulence properties, vortex stretching and intermittency, can be tampered with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batchelor, G.K.: The theory of homogeneous turbulence. Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  2. Corrsin, S.: Turbulence: experimental methods. In: Handbook der Physik, pp. 524 (1963)

    Google Scholar 

  3. Comte-Bellot, G., Corrsin, S.: The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657–682 (1966)

    Article  Google Scholar 

  4. Frisch, U.: Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  5. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  6. Cheskidov, A., Doering, C.R., Petrov, N.P.: Energy dissipation in Fractal-Forced flow. J. Math. Phys. 48, 065208 (2007)

    Article  MathSciNet  Google Scholar 

  7. Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Seoud, R.E., Vassilicos, J.C.: Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19, 105108 (2007)

    Article  Google Scholar 

  9. George, W.K.: The decay of homogeneous turbulence. Phys. Fluids A 4(7), 1492–1509 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Vincent, A., Meneguzzi, M.: The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 1–25 (1991)

    Article  MATH  Google Scholar 

  11. de Bruyn Kops, S.M., Riley, J.J.: Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids 10(9), 2125–2127 (1998)

    Article  Google Scholar 

  12. Tavoularis, S., Bennett, J.C., Corrsin, S.: Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 88, 63 (1978)

    Article  Google Scholar 

  13. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, vol. 2. MIT Press, Cambridge (1975)

    Google Scholar 

  14. Wyngaard, J.C., Tennekes, H.: Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys. Fluids 13, 1962–1969 (1970)

    Article  Google Scholar 

  15. van Atta, C.W., Antonia, R.A.: Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23, 252–257 (1980)

    Article  Google Scholar 

  16. Burattini, P., Lavoie, P., Antonia, R.A.: Velocity derivative skewness in isotropic turbulence and it measurement with hot wires. Exp. Fluids (to appear)

    Google Scholar 

  17. Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19, 035103 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seoud, R.E.E., Vassilicos, J.C. (2009). Fully Developed Turbulence with Diminishing Mean Vortex Stretching and Reduced Intermittency. In: Peinke, J., Oberlack, M., Talamelli, A. (eds) Progress in Turbulence III. Springer Proceedings in Physics, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02225-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02225-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02224-1

  • Online ISBN: 978-3-642-02225-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics