Skip to main content

The Roles of Tetraspanins in HIV-1 Replication

  • Chapter
  • First Online:
HIV Interactions with Host Cell Proteins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 339))

Abstract

Tetraspanins are small integral membrane proteins that are known to control a variety of cellular processes, including signaling, migration and cell–cell fusion. Research over the past few years established that they are also regulators of various steps in the HIV-1 replication cycle, but the mechanisms through which these proteins either enhance or repress virus spread remain largely unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloia RC, Tian H et al (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 90(11):5181–5185

    PubMed  CAS  Google Scholar 

  • Barreiro O, Zamai M et al (2008) Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 183(3):527–542

    PubMed  CAS  Google Scholar 

  • Bieniasz PD (2006) Late budding domains and host proteins in enveloped virus release. Virology 344(1):55–63

    PubMed  CAS  Google Scholar 

  • Boge M, Wyss S et al (1998) A membrane-proximal tyrosine-based signal mediates internalization of the HIV-1 envelope glycoprotein via interaction with the AP-2 clathrin adaptor. J Biol Chem 273(25):15773–15778

    PubMed  CAS  Google Scholar 

  • Booth AM, Fang Y et al (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172(6):923–935

    PubMed  CAS  Google Scholar 

  • Boucheix C, Duc GH et al (2001) Tetraspanins and malignancy. Expert Rev Mol Med 2001:1–17

    PubMed  Google Scholar 

  • Bratt MA, Gallaher WR (1969) Preliminary analysis of the requirements for fusion from within and fusion from without by Newcastle disease virus. Proc Natl Acad Sci USA 64(2):536–543

    PubMed  CAS  Google Scholar 

  • Brazzoli M, Bianchi A et al (2008) CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. J Virol 82(17):8316–8329

    PubMed  CAS  Google Scholar 

  • Brugger B, Glass B et al (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 103(8):2641–2646

    PubMed  Google Scholar 

  • Chen H, Dziuba N et al (2008) A critical role for CD63 in HIV replication and infection of macrophages and cell lines. Virology 379(2):191–196

    PubMed  CAS  Google Scholar 

  • Chertova E, Chertov O et al (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80(18):9039–9052

    PubMed  CAS  Google Scholar 

  • Cheynier R, Henrichwark S et al (1994) HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. Cell 78(3):373–387

    PubMed  CAS  Google Scholar 

  • Clavel F, Charneau P (1994) Fusion from without directed by human immunodeficiency virus particles. J Virol 68(2):1179–1185

    PubMed  CAS  Google Scholar 

  • Davis MR, Jiang J et al (2006) A mutation in the human immunodeficiency virus type 1 Gag protein destabilizes the interaction of the envelope protein subunits gp120 and gp41. J Virol 80(5):2405–2417

    PubMed  CAS  Google Scholar 

  • de Parseval A, Lerner DL et al (1997) Blocking of feline immunodeficiency virus infection by a monoclonal antibody to CD9 is via inhibition of virus release rather than interference with receptor binding. J Virol 71(8):5742–5749

    PubMed  Google Scholar 

  • Deneka M, Pelchen-Matthews A et al (2007) In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 177(2):329–341

    PubMed  CAS  Google Scholar 

  • Dong X, Li H et al (2005) AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 120(5):663–674

    PubMed  CAS  Google Scholar 

  • Espenel C, Margeat E et al (2008) Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. J Cell Biol 182(4):765–776

    PubMed  CAS  Google Scholar 

  • Fackler OT, Alcover A et al (2007) Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 7(4):310–317

    PubMed  CAS  Google Scholar 

  • Fais S, Borghi P et al (1996) Human immunodeficiency virus type 1 induces cellular polarization, intercellular adhesion molecule-1 redistribution, and multinucleated giant cell generation in human primary monocytes but not in monocyte-derived macrophages. Lab Invest 75(6):783–790

    PubMed  CAS  Google Scholar 

  • Fradkin LG, Kamphorst JT et al (2002) Genomewide analysis of the Drosophila tetraspanins reveals a subset with similar function in the formation of the embryonic synapse. Proc Natl Acad Sci USA 99(21):13663–13668

    PubMed  CAS  Google Scholar 

  • Freed EO (2004) HIV-1 and the host cell: an intimate association. Trends Microbiol 12(4):170–177

    PubMed  CAS  Google Scholar 

  • Friedl P, den Boer AT et al (2005) Tuning immune responses: diversity and adaptation of the immunological synapse. Nat Rev Immunol 5(7):532–545

    PubMed  CAS  Google Scholar 

  • Garcia E, Nikolic DS et al (2008) HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3. Traffic 9(2):200–214

    PubMed  CAS  Google Scholar 

  • Gluschankof P, Mondor I et al (1997) Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology 230(1):125–133

    PubMed  CAS  Google Scholar 

  • Goff SP (2007) Host factors exploited by retroviruses. Nat Rev Microbiol 5(4):253–263

    PubMed  CAS  Google Scholar 

  • Goff SP (2008) Knockdown screens to knockout HIV-1. Cell 135(3):417–420

    PubMed  CAS  Google Scholar 

  • Gordon-Alonso M, Yanez-Mo M et al (2006) Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J Immunol 177(8):5129–5137

    PubMed  CAS  Google Scholar 

  • Grigorov B, Arcanger F et al (2006) Assembly of infectious HIV-1 in human epithelial and T-lymphoblastic cell lines. J Mol Biol 359(4):848–862

    PubMed  CAS  Google Scholar 

  • Grigorov BV, Attuil-Audenis V et al (2009) A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell line. Retrovirolgy 6:28

    Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811

    PubMed  CAS  Google Scholar 

  • Hemler ME (2008) Targeting of tetraspanin proteins - potential benefits and strategies. Nat Rev Drug Discov 7(9):747–758

    PubMed  CAS  Google Scholar 

  • Higginbottom A, Takahashi Y et al (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311(1):208–214

    PubMed  CAS  Google Scholar 

  • Ho SH, Martin F et al (2006) Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J Virol 80(13):6487–6496

    PubMed  CAS  Google Scholar 

  • Hope TJ (2007) Bridging efficient viral infection. Nat Cell Biol 9(3):243–244

    PubMed  CAS  Google Scholar 

  • Hosmalin A, Samri A et al (2001) HIV-specific effector cytotoxic T lymphocytes and HIV-producing cells colocalize in white pulps and germinal centers from infected patients. Blood 97(9):2695–2701

    PubMed  CAS  Google Scholar 

  • Huang S, Yuan S et al (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 86(6):674–684

    PubMed  CAS  Google Scholar 

  • Hunter E, Swanstrom R (1990) Retrovirus envelope glycoproteins. Curr Top Microbiol Immunol 157:187–253

    PubMed  CAS  Google Scholar 

  • Igakura T, Stinchcombe JC et al (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299(5613):1713–1716

    PubMed  CAS  Google Scholar 

  • Imai T, Kakizaki M et al (1995) Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82. J Immunol 155(3):1229–1239

    PubMed  CAS  Google Scholar 

  • Inoue N, Ikawa M et al (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434(7030):234–238

    PubMed  CAS  Google Scholar 

  • Jaiswal JK, Chakrabarti S et al (2004) Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS Biol 2(8):E233

    PubMed  Google Scholar 

  • Janvier K, Bonifacino JS (2005) Role of the Endocytic Machinery in the Sorting of Lysosome-associated Membrane Proteins. Mol Biol Cell 16(9):4231–4242

    PubMed  CAS  Google Scholar 

  • Jiang J, Aiken C (2006) Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages. Virology 346(2):460–468

    PubMed  CAS  Google Scholar 

  • Jiang J, Aiken C (2007) Maturation-dependent human immunodeficiency virus type 1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail. J Virol 81(18):9999–10008

    PubMed  CAS  Google Scholar 

  • Johnson DC, Huber MT (2002) Directed egress of animal viruses promotes cell-to-cell spread. J Virol 76(1):1–8

    PubMed  CAS  Google Scholar 

  • Jolly C, Kashefi K et al (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199(2):283–293

    PubMed  CAS  Google Scholar 

  • Jolly C, Sattentau QJ (2007) Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J Virol 81(15):7873–7884

    PubMed  CAS  Google Scholar 

  • Jouvenet N, Bieniasz PD et al (2008) Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454(7201):236–240

    PubMed  CAS  Google Scholar 

  • Kaizuka Y, Douglass AD et al (2007) Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc Natl Acad Sci USA 104(51):20296–20301

    PubMed  CAS  Google Scholar 

  • Kaji K, Oda S et al (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol 247(2):327–334

    PubMed  CAS  Google Scholar 

  • Kapadia SB, Barth H et al (2007) Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J Virol 81(1):374–383

    PubMed  CAS  Google Scholar 

  • Khurana S, Krementsov DN et al (2007) Human immunodeficiency virus type 1 and influenza virus exit via different membrane microdomains. J Virol 81(22):12630–12640

    PubMed  CAS  Google Scholar 

  • Krementsov DN, Weng J et al (2009) Tetraspanins regulate cell-to-cell transmission of HIV-1. Retrovirology 6:64

    Google Scholar 

  • Le Naour F, Rubinstein E et al (2000) Severely reduced female fertility in CD9-deficient mice. Science 287(5451):319–321

    PubMed  Google Scholar 

  • Levy S, Shoham T (2005a) Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224

    CAS  Google Scholar 

  • Levy S, Shoham T (2005b) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5(2):136–148

    CAS  Google Scholar 

  • Mantegazza AR, Barrio MM et al (2004) CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells. Blood 104(4):1183–1190

    PubMed  CAS  Google Scholar 

  • Marsh M, Pelchen-Matthews A (2000) Endocytosis in viral replication. Traffic 1(7):525–532

    PubMed  CAS  Google Scholar 

  • Mazurov D, Heidecker G et al (2007) The inner loop of tetraspanins CD82 and CD81 mediates interactions with human T cell lymphotrophic virus type 1 Gag protein. J Biol Chem 282(6):3896–3903

    PubMed  CAS  Google Scholar 

  • Meerloo T, Parmentier HK et al (1992) Modulation of cell surface molecules during HIV-1 infection of H9 cells. An immunoelectron microscopic study. Aids 6(10):1105–1116

    PubMed  CAS  Google Scholar 

  • Meerloo T, Sheikh MA et al (1993) Host cell membrane proteins on human immunodeficiency virus type 1 after in vitro infection of H9 cells and blood mononuclear cells. An immuno-electron microscopic study. J Gen Virol 74(Pt 1):129–135

    PubMed  CAS  Google Scholar 

  • Min G, Wang H et al (2006) Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol 173(6):975–983

    PubMed  CAS  Google Scholar 

  • Miyado K, Yamada G et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287(5451):321–324

    PubMed  CAS  Google Scholar 

  • Miyado K, Yoshida K et al (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 105(35):12921–12926

    PubMed  CAS  Google Scholar 

  • Morita E, Sundquist WI (2004) Retrovirus budding. Annu Rev Cell Dev Biol 20:395–425

    PubMed  CAS  Google Scholar 

  • Murakami T (2008) Roles of the interactions between Env and Gag proteins in the HIV-1 replication cycle. Microbiol Immunol 52(5):287–295

    PubMed  CAS  Google Scholar 

  • Murakami T, Ablan S et al (2004) Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 78(2):1026–1031

    PubMed  CAS  Google Scholar 

  • Murray JL, Mavrakis M et al (2005) Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 79(18):11742–11751

    PubMed  CAS  Google Scholar 

  • Nydegger S, Foti M et al (2003) HIV-1 egress is gated through late endosomal membranes. Traffic 4(12):902–910

    PubMed  CAS  Google Scholar 

  • Nydegger S, Khurana S et al (2006) Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 173(5):795–807

    PubMed  CAS  Google Scholar 

  • Ohno H, Aguilar RC et al (1997) Interaction of endocytic signals from the HIV-1 envelope glycoprotein complex with members of the adaptor medium chain family. Virology 238(2):305–315

    PubMed  CAS  Google Scholar 

  • Ohta H, Tsurudome M et al (1994) Molecular and biological characterization of fusion regulatory proteins (FRPs): anti-FRP mAbs induced HIV-mediated cell fusion via an integrin system. Embo J 13(9):2044–2055

    PubMed  CAS  Google Scholar 

  • Ono A, Freed EO (2005) Role of lipid rafts in virus replication. Adv Virus Res 64:311–358

    PubMed  CAS  Google Scholar 

  • Orentas RJ, Hildreth JE (1993) Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV. AIDS Res Hum Retroviruses 9(11):1157–1165

    PubMed  CAS  Google Scholar 

  • Pelchen-Matthews A, Kramer B et al (2003) Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162(3):443–455

    PubMed  CAS  Google Scholar 

  • Phillips DM (1994) The role of cell-to-cell transmission in HIV infection. Aids 8(6):719–731

    PubMed  CAS  Google Scholar 

  • Piguet V, Sattentau Q (2004) Dangerous liaisons at the virological synapse. J Clin Invest 114(5):605–610

    PubMed  CAS  Google Scholar 

  • Pique C, Lagaudriere-Gesbert C et al (2000) Interaction of CD82 tetraspanin proteins with HTLV-1 envelope glycoproteins inhibits cell-to-cell fusion and virus transmission. Virology 276(2):455–465

    PubMed  CAS  Google Scholar 

  • Raposo G, Moore M et al (2002) Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3(10):718–729

    PubMed  CAS  Google Scholar 

  • Rowell JF, Stanhope PE et al (1995) Endocytosis of endogenously synthesized HIV-1 envelope protein Mechanism and role in processing for association with class II MHC. J Immunol 155(1):473–488

    PubMed  CAS  Google Scholar 

  • Ruiz-Mateos E, Pelchen-Matthews A et al (2008) CD63 is not required for production of infectious human immunodeficiency virus type 1 in human macrophages. J Virol 82(10):4751–4761

    PubMed  CAS  Google Scholar 

  • Runge KE, Evans JE et al (2007) Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304(1):317–325

    PubMed  CAS  Google Scholar 

  • Sato K, Aoki J et al (2007) Modulation of Human Immunodeficiency Virus Type 1 Infectivity through Incorporation of Tetraspanin Proteins. J Virol 82(2):1021–1033

    PubMed  Google Scholar 

  • Sattentau Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6(11):815–826

    PubMed  CAS  Google Scholar 

  • Sauter MM, Pelchen-Matthews A et al (1996) An internalization signal in the simian immunodeficiency virus transmembrane protein cytoplasmic domain modulates expression of envelope glycoproteins on the cell surface. J Cell Biol 132(5):795–811

    PubMed  CAS  Google Scholar 

  • Seigneuret M, Delaguillaumie A et al (2001) Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276(43):40055–40064

    PubMed  CAS  Google Scholar 

  • Singethan K, Muller N et al (2008) CD9 clustering and formation of microvilli zippers between contacting cells regulates virus-induced cell fusion. Traffic 9(6):924–935

    PubMed  CAS  Google Scholar 

  • Sourisseau M, Sol-Foulon N et al (2007) Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 81(2):1000–1012

    PubMed  CAS  Google Scholar 

  • Stipp CS, Kolesnikova TV et al (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28(2):106–112

    PubMed  CAS  Google Scholar 

  • Sylwester A, Murphy S et al (1997) HIV-induced T cell syncytia are self-perpetuating and the primary cause of T cell death in culture. J Immunol 158(8):3996–4007

    PubMed  CAS  Google Scholar 

  • Tachibana I, Hemler ME (1999) Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J Cell Biol 146(4):893–904

    PubMed  CAS  Google Scholar 

  • Takeda Y, He P et al (2008) Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem 283(38):26089–26097

    PubMed  CAS  Google Scholar 

  • Takeda Y, Tachibana I et al (2003) Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 161(5):945–956

    PubMed  CAS  Google Scholar 

  • Tardif MR, Tremblay MJ (2005) Tetraspanin CD81 provides a costimulatory signal resulting in increased human immunodeficiency virus type 1 gene expression in primary CD4+ T lymphocytes through NF-kappaB, NFAT, and AP-1 transduction pathways. J Virol 79(7):4316–4328

    PubMed  CAS  Google Scholar 

  • Turville SG, Aravantinou M et al (2008) Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat Methods 5(1):75–85

    PubMed  CAS  Google Scholar 

  • Unternaehrer JJ, Chow A et al (2007) The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA 104(1):234–239

    PubMed  CAS  Google Scholar 

  • Vasiliver-Shamis G, Tuen M et al (2008) Human immunodeficiency virus type 1 envelope gp120 induces a stop signal and virological synapse formation in noninfected CD4+ T cells. J Virol 82(19):9445–9457

    PubMed  CAS  Google Scholar 

  • von Lindern JJ, Rojo D et al (2003) Potential role for CD63 in CCR5-mediated human immunodeficiency virus type 1 infection of macrophages. J Virol 77(6):3624–3633

    Google Scholar 

  • Welsch S, Keppler OT et al (2007) HIV-1 Buds Predominantly at the Plasma Membrane of Primary Human Macrophages. PLoS Pathog 3(3):e36

    PubMed  Google Scholar 

  • Weng J, Krementsov DN et al (2009) Formation of syncytia is repressed by tetraspanins in HIV-1 producing cells. J Virol 83(15):7467–7474

    Google Scholar 

  • Wright MD, Moseley GW et al (2004) Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens 64(5):533–542

    PubMed  CAS  Google Scholar 

  • Wyma DJ, Jiang J et al (2004) Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78(7):3429–3435

    PubMed  CAS  Google Scholar 

  • Yang X, Kovalenko OV et al (2004) Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J Cell Biol 167(6):1231–1240

    PubMed  CAS  Google Scholar 

  • Yoshida T, Kawano Y et al (2008) A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane. Traffic 9(4):540–558

    PubMed  CAS  Google Scholar 

  • Zhu GZ, Miller BJ et al (2002) Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129(8):1995–2002

    PubMed  CAS  Google Scholar 

  • Ziyyat A, Rubinstein E et al (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci 119(Pt 3):416–424

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank the current members of my group, Dimitry Krementsov, Marie Lambelé, Nate Roy and Jia Weng, for critical reading of the manuscript. Work in our laboratory is supported by the NIH and by UVM’s College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Thali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thali, M. (2009). The Roles of Tetraspanins in HIV-1 Replication. In: Spearman, P., Freed, E. (eds) HIV Interactions with Host Cell Proteins. Current Topics in Microbiology and Immunology, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02175-6_5

Download citation

Publish with us

Policies and ethics