Skip to main content

TRIM5alpha

  • Chapter
  • First Online:
HIV Interactions with Host Cell Proteins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 339))

Abstract

TRIM5α protein blocks retroviral replication at early postentry stage reducing the accumulation of reverse transcriptase products. TRIM5α proteins of Old World primates restrict HIV-1 infection whereas TRIM5α proteins of most New World monkeys restrict SIVmac infection. TRIM5α protein has a RING domain, B-box 2 domain, coiled-coil domain, and PRYSPRY domain. The PRYSPRY domain of TRIM5α determines viral specificity and restriction potency by mediating recognition of the retroviral capsid. The coiled-coil domain is essential for TRIM5α oligomerization, which contributes to binding avidity for the viral capsid. The RING domain and B-box 2 domain are required for efficient restriction activity of TRIM5α protein but the mechanisms remain to be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JL, Campbell EM, Wu X, Vandegraaff N, Engelman A, Hope TJ (2006) Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J Virol 80(19):9754–9760

    Article  PubMed  CAS  Google Scholar 

  • Arts EJ, Wainberg MA (1996) Human immunodeficiency virus type 1 reverse transcriptase and early events in reverse transcription. Adv Virus Res 46:97–163

    Article  PubMed  CAS  Google Scholar 

  • Asaoka K, Ikeda K, Hishinuma T, Horie-Inoue K, Takeda S, Inoue S (2005) A retrovirus restriction factor TRIM5alpha is transcriptionally regulated by interferons. Biochem Biophys Res Commun 338(4):1950–1956

    Article  PubMed  CAS  Google Scholar 

  • Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA 101(Suppl 2):14572–14579

    Article  PubMed  CAS  Google Scholar 

  • Berthoux L, Sebastian S, Sokolskaja E, Luban J (2005) Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc Natl Acad Sci USA 102(41):14849–14853

    Article  PubMed  CAS  Google Scholar 

  • Besnier C, Takeuchi Y, Towers G (2002) Restriction of lentivirus in monkeys. Proc Natl Acad Sci U S A 99(18):11920–11925

    Article  PubMed  CAS  Google Scholar 

  • Besnier C, Ylinen L, Strange B, Lister A, Takeuchi Y, Goff SP, Towers GJ (2003) Characterization of murine leukemia virus restriction in mammals. J Virol 77(24):13403–13406

    Article  PubMed  CAS  Google Scholar 

  • Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382(6594):8269

    Article  Google Scholar 

  • Bishop KN, Bock M, Towers G, Stoye JP (2001) Identification of the regions of Fv1 necessary for murine leukemia virus restriction. J Virol 75(11):5182–5188

    Article  PubMed  CAS  Google Scholar 

  • Braaten D, Franke EK, Luban J (1996) Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J Virol 70(6):3551–3560

    PubMed  CAS  Google Scholar 

  • Braaten D, Luban J (2001) Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO J 20(6):1300–1309

    Article  PubMed  CAS  Google Scholar 

  • Brennan G, Kozyrev Y, Hu SL (2008) TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci USA 105(9):3569–3574

    Article  PubMed  CAS  Google Scholar 

  • Bukovsky AA, Weimann A, Accola MA, Gottlinger HG (1997) Transfer of the HIV-1 cyclophilin-binding site to simian immunodeficiency virus from Macaca mulatta can confer both cyclosporin sensitivity and cyclosporin dependence. Proc Natl Acad Sci USA 94(20):10943–10948

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA 90(13):6125–6129

    Article  PubMed  CAS  Google Scholar 

  • Campbell EM, Dodding MP, Yap MW, Wu X, Gallois-Montbrun S, Malim MH, Stoye JP, Hope TJ (2007) TRIM5 alpha cytoplasmic bodies are highly dynamic structures. Mol Biol Cell 18(6):2102–2111

    Article  PubMed  CAS  Google Scholar 

  • Campbell EM, Perez O, Anderson JL, Hope TJ (2008) Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5alpha. J Cell Biol 180(3):549–561

    Article  PubMed  CAS  Google Scholar 

  • Chelbi-Alix MK, Pelicano L, Quignon F, Koken MH, Venturini L, Stadler M, Pavlovic J, Degos L, de The H (1995) Induction of the PML protein by interferons in normal and APL cells. Leukemia 9(12):2027–2033

    PubMed  CAS  Google Scholar 

  • Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA 99(18):11914–11919

    Article  PubMed  CAS  Google Scholar 

  • DesGroseillers L, Jolicoeur P (1983) Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. J Virol 48(3):685–696

    PubMed  CAS  Google Scholar 

  • Diaz-Griffero F, Kar A, Lee M, Stremlau M, Poeschla E, Sodroski J (2007a) Comparative requirements for the restriction of retrovirus infection by TRIM5alpha and TRIMCyp. Virology 369(2):400–410

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Griffero F, Kar A, Perron M, Xiang SH, Javanbakht H, Li X, Sodroski J (2007b) Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2 domain. J Virol 81(19):10362–10378

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Griffero F, Li X, Javanbakht H, Song B, Welikala S, Stremlau M, Sodroski J (2006) Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology 349(2):300–315

    Article  PubMed  CAS  Google Scholar 

  • Dodding MP, Bock M, Yap MW, Stoye JP (2005) Capsid processing requirements for abrogation of Fv1 and Ref1 restriction. J Virol 79(16):10571–10577

    Article  PubMed  CAS  Google Scholar 

  • Dorfman T, Gottlinger HG (1996) The human immunodeficiency virus type 1 capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM 811. J Virol 70(9):5751–5757

    PubMed  CAS  Google Scholar 

  • Farnet CM, Haseltine WA (1991) Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 65(4):1910–1915

    PubMed  CAS  Google Scholar 

  • Fassati A, Goff SP (2001) Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 75(8):3626–3635

    Article  PubMed  CAS  Google Scholar 

  • Forshey BM, Shi J, Aiken C (2005) Structural requirements for recognition of the human immunodeficiency virus type 1 core during host restriction in owl monkey cells. J Virol 79(2):869–875

    Article  PubMed  CAS  Google Scholar 

  • Forshey BM, von Schwedler U, Sundquist WI, Aiken C (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76(11):5667–5677

    Article  PubMed  CAS  Google Scholar 

  • Franke EK, Luban J (1996) Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag-cyclophilin A interaction. Virology 222(1):279–282

    Article  PubMed  CAS  Google Scholar 

  • Franke EK, Yuan HE, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372(6504):359–362

    Article  PubMed  CAS  Google Scholar 

  • Freemont PS (2000) RING for destruction? Curr Biol 10(2):R84–R87

    Article  PubMed  CAS  Google Scholar 

  • Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP (1996) Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87(7):1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt V, Bleiber G, May M, Martinez R, Ortiz M, Telenti A (2006) Role of common human TRIM5alpha variants in HIV-1 disease progression. Retrovirology 3:54

    Article  PubMed  CAS  Google Scholar 

  • Gongora C, Tissot C, Cerdan C, Mechti N (2000) The interferon-inducible Staf50 gene is downregulated during T cell costimulation by CD2 and CD28. J Interferon Cytokine Res 20(11):955–961

    Article  PubMed  CAS  Google Scholar 

  • Greber UF, Singh I, Helenius A (1994) Mechanisms of virus uncoating. Trends Microbiol 2(2):52–56

    Article  PubMed  CAS  Google Scholar 

  • Grewe C, Beck A, Gelderblom HR (1990) HIV: early virus-cell interactions. J Acquir Immune Defic Syndr 3(10):965–974

    PubMed  CAS  Google Scholar 

  • Grutter C, Briand C, Capitani G, Mittl PR, Papin S, Tschopp J, Grutter MG (2006) Structure of the PRYSPRY-domain: implications for autoinflammatory diseases. FEBS Lett 580(1):99–106

    Article  PubMed  CAS  Google Scholar 

  • Hatziioannou T, Cowan S, Goff SP, Bieniasz PD, Towers GJ (2003) Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J 22(3):385–394

    Article  PubMed  CAS  Google Scholar 

  • Hatziioannou T, Cowan S, Von Schwedler UK, Sundquist WI, Bieniasz PD (2004a) Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. J Virol 78(11):6005–6012

    Article  PubMed  CAS  Google Scholar 

  • Hatziioannou T, Perez-Caballero D, Cowan S, Bieniasz PD (2005) Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J Virol 79(1):176–183

    Article  PubMed  CAS  Google Scholar 

  • Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD (2004b) Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci USA 101(29):10774–10779

    Article  PubMed  CAS  Google Scholar 

  • Himathongkham S, Luciw PA (1996) Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells. Virology 219(2):485–488

    Article  PubMed  CAS  Google Scholar 

  • Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J (1999) Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 73(12):10020–10028

    PubMed  CAS  Google Scholar 

  • Javanbakht H, An P, Gold B, Petersen DC, O'Huigin C, Nelson GW, O'Brien SJ, Kirk GD, Detels R, Buchbinder S, Donfield S, Shulenin S, Song B, Perron MJ, Stremlau M, Sodroski J, Dean M, Winkler C (2006a) Effects of human TRIM5alpha polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection. Virology 354(1):15–27

    Article  PubMed  CAS  Google Scholar 

  • Javanbakht H, Diaz-Griffero F, Stremlau M, Si Z, Sodroski J (2005) The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem 280(29):26933–26940

    Article  PubMed  CAS  Google Scholar 

  • Javanbakht H, Yuan W, Yeung DF, Song B, Diaz-Griffero F, Li Y, Li X, Stremlau M, Sodroski J (2006b) Characterization of TRIM5alpha trimerization and its contribution to human immunodeficiency virus capsid binding. Virology 353(1):234–246

    Article  PubMed  CAS  Google Scholar 

  • Jolicoeur P, Rassart E (1980) Effect of Fv-1 gene product on synthesis of linear and supercoiled viral DNA in cells infected with murine leukemia virus. J Virol 33(1):183–195

    PubMed  CAS  Google Scholar 

  • Kar AK, Diaz-Griffero F, Li Y, Li X, Sodroski J (2008) Biochemical and biophysical characterization of a chimeric TRIM21-TRIM5alpha protein. J Virol 82(23):11669–11681

    Article  PubMed  CAS  Google Scholar 

  • Karageorgos L, Li P, Burrell C (1993) Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Hum Retroviruses 9(9):817–823

    Article  PubMed  CAS  Google Scholar 

  • Keckesova Z, Ylinen LM, Towers GJ (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA 101(29):10780–10785

    Article  PubMed  CAS  Google Scholar 

  • Keckesova Z, Ylinen LM, Towers GJ (2006) Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5 alpha antiviral activity. J Virol 80(10):4683–4690

    Article  PubMed  CAS  Google Scholar 

  • Kootstra NA, Munk C, Tonnu N, Landau NR, Verma IM (2003) Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells. Proc Natl Acad Sci USA 100(3):1298–1303

    Article  PubMed  CAS  Google Scholar 

  • Kozak CA, Chakraborti A (1996) Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 225(2):300–305

    Article  PubMed  CAS  Google Scholar 

  • Langelier CR, Sandrin V, Eckert DM, Christensen DE, Chandrasekaran V, Alam SL, Aiken C, Olsen JC, Kar AK, Sodroski JG, Sundquist WI (2008) Biochemical characterization of a recombinant TRIM5alpha protein that restricts human immunodeficiency virus type 1 replication. J Virol 82(23):11682–11694

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li Y, Stremlau M, Yuan W, Song B, Perron M, Sodroski J (2006a) Functional replacement of the RING, B-box 2, and coiled-coil domains of tripartite motif 5alpha (TRIM5alpha) by heterologous TRIM domains. J Virol 80(13):6198–6206

    Article  PubMed  CAS  Google Scholar 

  • Li X, Sodroski J (2008) The TRIM5alpha B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. J Virol 82(23):11495–11502

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li X, Stremlau M, Lee M, Sodroski J (2006b) Removal of arginine 332 allows human TRIM5alpha to bind human immunodeficiency virus capsids and to restrict infection. J Virol 80(14):6738–6744

    Article  PubMed  CAS  Google Scholar 

  • Liao CH, Kuang YQ, Liu HL, Zheng YT, Su B (2007) A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS 21(Suppl 8):S19–S26

    Article  PubMed  CAS  Google Scholar 

  • Lilly F (1970) Fv-2: identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. J Natl Cancer Inst 45(1):163–169

    PubMed  CAS  Google Scholar 

  • Lin TY, Emerman M (2006) Cyclophilin A interacts with diverse lentiviral capsids. Retrovirology 3:70

    Google Scholar 

  • Lin TY, Emerman M (2008) Determinants of cyclophilin A-dependent TRIM5 alpha restriction against HIV-1. Virology 379(2):335–341

    Article  PubMed  CAS  Google Scholar 

  • Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73(6):1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Masters SL, Yao S, Willson TA, Zhang JG, Palmer KR, Smith BJ, Babon JJ, Nicola NA, Norton RS, Nicholson SE (2006) The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4-binding residues. Nat Struct Mol Biol 13(1):77–84

    Article  PubMed  CAS  Google Scholar 

  • Meroni G, Diez-Roux G (2005) TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27(11):1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71(7):5382–5390

    PubMed  CAS  Google Scholar 

  • Mische CC, Javanbakht H, Song B, Diaz-Griffero F, Stremlau M, Strack B, Si Z, Sodroski J (2005) Retroviral restriction factor TRIM5alpha is a trimer. J Virol 79(22):14446–14450

    Article  PubMed  CAS  Google Scholar 

  • Munk C, Brandt SM, Lucero G, Landau NR (2002) A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci USA 99(21):13843–13848

    Article  PubMed  CAS  Google Scholar 

  • Nakayama EE, Miyoshi H, Nagai Y, Shioda T (2005) A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5alpha determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J Virol 79(14):8870–8877

    Google Scholar 

  • Narayan S, Young JA (2004) Reconstitution of retroviral fusion and uncoating in a cell-free system. Proc Natl Acad Sci USA 101(20):7721–7726

    Article  PubMed  CAS  Google Scholar 

  • Newman RM, Hall L, Connole M, Chen GL, Sato S, Yuste E, Diehl W, Hunter E, Kaur A, Miller GM, Johnson WE (2006) Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5alpha. Proc Natl Acad Sci USA 103(50):19134–19139

    Article  PubMed  CAS  Google Scholar 

  • Newman RM, Hall L, Kirmaier A, Pozzi LA, Pery E, Farzan M, O'Neil SP, Johnson W (2008) Evolution of a TRIM5-CypA splice isoform in old world monkeys. PLoS Pathog 4(2):e1000003

    Article  PubMed  CAS  Google Scholar 

  • Nisole S, Lynch C, Stoye JP, Yap MW (2004) A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci USA 101(36):13324–13328

    Article  PubMed  CAS  Google Scholar 

  • Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3(10):799–808

    Article  PubMed  CAS  Google Scholar 

  • Ohkura S, Yap MW, Sheldon T, Stoye JP (2006). All three variable regions of the TRIM5alpha B30.2 domain can contribute to the specificity of retrovirus restriction. J Virol 80(17):8554–8565

    Google Scholar 

  • Orimo A, Tominaga N, Yoshimura K, Yamauchi Y, Nomura M, Sato M, Nogi Y, Suzuki M, Suzuki H, Ikeda K, Inoue S, Muramatsu M (2000) Molecular cloning of ring finger protein 21 (RNF21)/interferon-responsive finger protein (ifp1), which possesses two RING-B box-coiled coil domains in tandem. Genomics 69(1):143–149

    Article  PubMed  CAS  Google Scholar 

  • Ou CY, Boone LR, Koh CK, Tennant RW, Yang WK (1983) Nucleotide sequences of gag-pol regions that determine the Fv-1 host range property of BALB/c N-tropic and B-tropic murine leukemia viruses. J Virol 48(3):779–784

    PubMed  CAS  Google Scholar 

  • Owens CM, Song B, Perron MJ, Yang PC, Stremlau M, Sodroski J (2004) Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. J Virol 78(10):5423–5437

    Article  PubMed  CAS  Google Scholar 

  • Owens CM, Yang PC, Gottlinger H, Sodroski J (2003) Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J Virol 77(1):726–731

    Article  PubMed  CAS  Google Scholar 

  • Perez-Caballero D, Hatziioannou T, Yang A, Cowan S, Bieniasz PD (2005a) Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol 79(14):8969–8978

    Article  PubMed  CAS  Google Scholar 

  • Perez-Caballero D, Hatziioannou T, Zhang F, Cowan S, Bieniasz PD (2005b) Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. J Virol 79(24):15567–15572

    Article  PubMed  CAS  Google Scholar 

  • Perron MJ, Stremlau M, Lee M, Javanbakht H, Song B, Sodroski J (2007) The human TRIM5alpha restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. J Virol 81(5):2138–2148

    Article  PubMed  CAS  Google Scholar 

  • Perron M J, Stremlau M, Sodroski J (2006) Two surface-exposed elements of the B30.2/SPRY domain as potency determinants of N-tropic murine leukemia virus restriction by human TRIM5alpha. J Virol 80(11):5631–5636

    Google Scholar 

  • Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA 101(32):11827–11832

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  • Pincus T, Hartley JW, Rowe WP (1971) A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. J Exp Med 133(6):1219–1233

    Article  PubMed  CAS  Google Scholar 

  • Pryciak PM, Varmus HE (1992) Fv-1 restriction and its effects on murine leukemia virus integration in vivo and in vitro. J Virol 66(10):5959–5966

    PubMed  CAS  Google Scholar 

  • Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20(9):2140–2151

    Article  PubMed  CAS  Google Scholar 

  • Rold CJ, Aiken C (2008) Proteasomal degradation of TRIM5alpha during retrovirus restriction. PLoS Pathog 4(5):e1000074

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SL, Wu LI, Akey JM, Emerman M, Malik HS (2006) High-frequency persistence of an impaired allele of the retroviral defense gene TRIM5alpha in humans. Curr Biol 16(1):95–100

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SL, Wu LI, Emerman M, Malik HS (2005) Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102(8):2832–2837

    Article  PubMed  CAS  Google Scholar 

  • Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430(6999):569–573

    Article  PubMed  CAS  Google Scholar 

  • Schaller T, Hue S, Towers GJ (2007) An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins. J Virol 81(21):11713–11721

    Article  PubMed  CAS  Google Scholar 

  • Schnell JD, Hicke L (2003) Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278(38):35857–35860

    Article  PubMed  CAS  Google Scholar 

  • Sebastian S, Luban J (2005) TRIM5alpha selectively binds a restriction-sensitive retroviral capsid. Retrovirology 2:40

    Article  PubMed  CAS  Google Scholar 

  • Shibata R, Sakai H, Kawamura M, Tokunaga K, Adachi A (1995) Early replication block of human immunodeficiency virus type 1 in monkey cells. J Gen Virol 76 ( Pt 11):2723–2730

    Google Scholar 

  • Si Z, Vandegraaff N, O'Huigin C, Song B, Yuan W, Xu C, Perron M, Li X, Marasco WA, Engelman A, Dean M, Sodroski J (2006) Evolution of a cytoplasmic tripartite motif (TRIM) protein in cows that restricts retroviral infection. Proc Natl Acad Sci USA 103(19):7454–7459

    Article  PubMed  CAS  Google Scholar 

  • Sokolskaja E, Berthoux L, Luban J (2006) Cyclophilin A and TRIM5alpha independently regulate human immunodeficiency virus type 1 infectivity in human cells. J Virol 80(6):2855–2862

    Article  PubMed  CAS  Google Scholar 

  • Sokolskaja E, Sayah DM, Luban J (2004) Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol 78(23):12800–12808

    Article  PubMed  CAS  Google Scholar 

  • Song B, Diaz-Griffero F, Park DH, Rogers T, Stremlau M, Sodroski J (2005a) TRIM5alpha association with cytoplasmic bodies is not required for antiretroviral activity. Virology 343(2):201–2011

    Article  PubMed  CAS  Google Scholar 

  • Song B, Gold B, O'Huigin C, Javanbakht H, Li X, Stremlau M, Winkler C, Dean M, Sodroski J (2005b) The B30.2(SPRY) domain of the retroviral restriction factor TRIM5alpha exhibits lineage-specific length and sequence variation in primates. J Virol 79(10):6111–6121

    Google Scholar 

  • Song B, Javanbakht H, Perron M, Park DH, Stremlau M, Sodroski J (2005c) Retrovirus restriction by TRIM5alpha variants from Old World and New World primates. J Virol 79(7):3930–3937

    Article  PubMed  CAS  Google Scholar 

  • Speelmon EC, Livingston-Rosanoff D, Li SS, Vu Q, Bui J, Geraghty DE, Zhao LP, McElrath MJ (2006) Genetic association of the antiviral restriction factor TRIM5alpha with human immunodeficiency virus type 1 infection. J Virol 80(5):2463–2471

    Article  PubMed  CAS  Google Scholar 

  • Stoye JP (2002) An intracellular block to primate lentivirus replication. Proc Natl Acad Sci USA 99(18):11549–11551

    Article  PubMed  CAS  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427(6977):848–853

    Article  PubMed  CAS  Google Scholar 

  • Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J (2006a) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA 103(14):5514–5519

    Article  PubMed  CAS  Google Scholar 

  • Stremlau M, Perron M, Welikala S, Sodroski J (2005) Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 79(5):3139–3145

    Google Scholar 

  • Stremlau M, Song B, Javanbakht H, Perron M, Sodroski J (2006b) Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. Virology 351(1):112–120

    Article  PubMed  CAS  Google Scholar 

  • Sveda MM, Soeiro R (1976) Host restriction of Friend leukemia virus: synthesis and integration of the provirus. Proc Natl Acad Sci USA 73(7):2356–2360

    Article  PubMed  CAS  Google Scholar 

  • Tareen SU, Sawyer SL, Malik HS, Emerman M (2009) An expanded clade of rodent Trim5 genes. Virology 385(2):473–483

    Article  PubMed  CAS  Google Scholar 

  • Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Gottlinger HG (1994) Functional association of cyclophilin A with HIV-1 virions. Nature 372(6504):363–365

    Article  PubMed  CAS  Google Scholar 

  • Tissot C, Mechti N (1995) Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J Biol Chem 270(25):14891–14898

    Article  PubMed  CAS  Google Scholar 

  • Torok M, Etkin LD (2001) Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation 67(3):63–71

    Article  PubMed  CAS  Google Scholar 

  • Towers G, Bock M, Martin S, Takeuchi Y, Stoye JP, Danos O (2000) A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci USA 97(22):12295–12299

    Article  PubMed  CAS  Google Scholar 

  • Towers GJ (2005) Control of viral infectivity by tripartite motif proteins. Hum Gene Ther 16(10):1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9(9):1138–1143

    Article  PubMed  CAS  Google Scholar 

  • van Manen D, Rits MA, Beugeling C, van Dort K, Schuitemaker H, Kootstra NA (2008) The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection. PLoS Pathog 4(2):e18

    Article  PubMed  CAS  Google Scholar 

  • Virgen CA, Kratovac Z, Bieniasz PD, Hatziioannou T (2008) Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc Natl Acad Sci USA 105(9):3563–3568

    Article  PubMed  CAS  Google Scholar 

  • Whitcomb JM, Hughes SH (1992) Retroviral reverse transcription and integration: progress and problems. Annu Rev Cell Biol 8:275–306

    Article  PubMed  CAS  Google Scholar 

  • Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, Towers GJ (2008) Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci USA 105(9):3557–3562

    Article  PubMed  CAS  Google Scholar 

  • Woo JS, Imm JH, Min CK, Kim KJ, Cha SS, Oh BH (2006) Structural and functional insights into the B30.2/SPRY domain. EMBO J 25(6):1353–1363

    Google Scholar 

  • Wu X, Anderson JL, Campbell EM, Joseph AM, Hope TJ (2006) Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc Natl Acad Sci USA 103(19):7465–7470

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Yang L, Moitra PK, Hashimoto K, Rallabhandi P, Kaul S, Meroni G, Jensen JP, Weissman AM, D'Arpa P (2003) BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. Exp Cell Res 288(1):84–93

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi K, Wada K, Tanji K, Tanaka M, Kamitani T (2008) Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its potential role. FEBS J 275(7):1540–1555

    Article  PubMed  CAS  Google Scholar 

  • Yap MW, Nisole S, Lynch C, Stoye JP (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 101(29):10786–10791

    Article  PubMed  CAS  Google Scholar 

  • Yap MW, Nisole S, Stoye JP (2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 15(1):73–78

    Article  PubMed  CAS  Google Scholar 

  • Ylinen LM, Keckesova Z, Webb BL, Gifford RJ, Smith TP, Towers GJ (2006) Isolation of an active Lv1 gene from cattle indicates that tripartite motif protein-mediated innate immunity to retroviral infection is widespread among mammals. J Virol 80(15):7332–7338

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5(10):781–791

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeongwoon Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, B. (2009). TRIM5alpha. In: Spearman, P., Freed, E. (eds) HIV Interactions with Host Cell Proteins. Current Topics in Microbiology and Immunology, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02175-6_3

Download citation

Publish with us

Policies and ethics