Advertisement

Toward Robust Myocardial Blush Grade Estimation in Contrast Angiography

  • Carlo Gatta
  • Juan Diego Gomez Valencia
  • Francesco Ciompi
  • Oriol Rodriguez Leor
  • Petia Radeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5524)

Abstract

The assessment of Myocardial Blush Grade after primary angioplasty is a precious diagnostic tool to understand if the patient needs further medication or the use of specifics drugs. Unfortunately, the assessment of MBG is difficult for non highly specialized staff. Experimental data show that there is poor correlation between MBG assessment of low and high specialized staff, thus reducing its applicability. This paper proposes a method able to achieve an objective measure of MBG, or a set of parameters that correlates with the MBG. The method tracks the blush area starting from just one single frame tagged by the physician. As a consequence, the blush area is kept isolated from contaminating phenomena such as diaphragm and arteries movements. We also present a method to extract four parameters that are expected to correlate with the MBG. Preliminary results show that the method is capable of extracting interesting information regarding the behavior of the myocardial perfusion.

Keywords

Medical Imaging Tracking Optical Flow Myocardial perfusion Myocardial Blush Grade Primary Angioplasty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van’t Hof, A.W., Liem, A., Suryapranata, H., Hoorntje, J.C., de Boer, M.J., Zijlstra, F.: Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. zwolle myocardial infarction study group. Circulation 97(23), 2302–2306 (1998)CrossRefGoogle Scholar
  2. 2.
    Bertomeu-González, V., Bodí, V., Sanchis, J., Núñz, J., López-Lereu, M.P., Peña, G., Losada, A., Gómez, C., Chorro, F.J., Llácer, A.: Limitations of myocardial blush grade in the evaluation of myocardial perfusion in patients with acute myocardial infarction and timi 3 grade flow. Rev. Espa. Cardiol. 59, 575–581 (2006)CrossRefGoogle Scholar
  3. 3.
    Henriques, J.P.S., Zijlstra, F., van’t Hof, A.W.J., de Boer, M.J., Dambrink, J.H.E., Gosselink, M., Hoorntje, J.C.A., Suryapranata, H.: Angiographic assessment of reperfusion in acute myocardial infarction by myocardial blush grade. Circulation 107(16), 2115–2119 (2003)CrossRefGoogle Scholar
  4. 4.
    Gibson, C.M., Cannon, C.P., Murphy, S.A., Ryan, K.A., Mesley, R., Marble, S.J., McCabe, C.H., Van De Werf, F., Braunwald, E.: Relationship of timi myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation 101(2), 125–130 (2000)CrossRefGoogle Scholar
  5. 5.
    Gibson, C.M., Cannon, C.P., Murphy, S.A., Marble, S.J., Barron, H.V., Braunwald, E., Group, T.I.M.I.S.: Relationship of the timi myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation 105(16), 1909–1913 (2002)CrossRefGoogle Scholar
  6. 6.
    Gil, D., Rodriguez-Leor, O., Radeva, P., Mauri, J.: Myocardial perfusion characterization from contrast angiography spectral distribution. IEEE Trans. Med. Imaging 27(5), 641–649 (2008)CrossRefGoogle Scholar
  7. 7.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)CrossRefGoogle Scholar
  8. 8.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions On Systems, Man, and Cybernetics 9(1), 62–66 (1979)CrossRefGoogle Scholar
  9. 9.
    Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization 6(2), 418–445 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carlo Gatta
    • 1
  • Juan Diego Gomez Valencia
    • 1
  • Francesco Ciompi
    • 1
  • Oriol Rodriguez Leor
    • 2
  • Petia Radeva
    • 1
  1. 1.Computer Vision CenterBellaterraSpain
  2. 2.Unitat d’hemodinàmica cardíaca hospital universitari Germans Trias i Pujol BadalonaSpain

Personalised recommendations