Enhancing In-Vitro IVUS Data for Tissue Characterization

  • Francesco Ciompi
  • Oriol Pujol
  • Oriol Rodriguez Leor
  • Carlo Gatta
  • Angel Serrano Vida
  • Petia Radeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5524)


Intravascular Ultrasound (IVUS) data validation is usually performed by comparing post-mortem (in-vitro) IVUS data and corresponding histological analysis of the tissue, obtaining a reliable ground truth. The main drawback of this method is the few number of available study cases due to the complex procedure of histological analysis. In this work we propose a novel semi-supervised approach to enhance the in-vitro training set by including examples from in-vivo coronary plaques data set. For this purpose, a Sequential Floating Forward Selection method is applied on in-vivo data and plaque characterization performances are evaluated by Leave-One-Patient-Out cross-validation technique. Supervised data inclusion improves global classification accuracy from 89.39% to 91.82%.


Intravascular Ultrasounds Plaque characterization Semi-supervised learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allwein, E.L., et al.: Reducing multiclass to binary: A unifying approach for margin classifier. Journal of Machine Learning Research 1, 113–141 (2000)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Burke, A.P., et al.: Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. The New England Journal of Medicine 336(18), 1276–1282 (1997)CrossRefGoogle Scholar
  3. 3.
    Caballero, K.L., et al.: Using Reconstructed IVUS images for Coronary Plaque Classification. In: Proceedings of the 29th Annual International Conference of the IEEE EMBSGoogle Scholar
  4. 4.
    Caballero, K.L.: Coronary Plaque Classification Using Intravascular Ultrasound Images and Radio Frequency Signals. Universitat Autónoma de Barcelona (2007)Google Scholar
  5. 5.
    Caballero, K.L., Barajas, J., Pujol, O., Salvatella, N., Radeva, P.I.: In-Vivo IVUS Tissue Classification: A Comparison Between RF Signal Analysis and Reconstructed Image. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 137–146. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    DeMaria, A.N., et al.: Imaging vulnerable plaque by ultrasound. Journal of the American College of Cardiology 47(8), C32–C39 (2006)CrossRefGoogle Scholar
  7. 7.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)zbMATHGoogle Scholar
  8. 8.
    Ehara, S., et al.: Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: An intravascular ultrasound study. Circulation 110, 3424–3429 (2004)CrossRefGoogle Scholar
  9. 9.
    Filho, E.D., et al.: A study on intravascular ultrasound image processing (2005)Google Scholar
  10. 10.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2000) (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Moore, M.P., et al.: Characterization of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validation. Heart 79, 459–467 (1998)CrossRefGoogle Scholar
  12. 12.
    Murashige, A., et al.: Detection of lipid-laden atherosclerotic plaque by wavelet analysis of radiofrequency intravascular ultrasound signals. Journal of the American College of Cardiology 45(12), 1954–1960 (2005)CrossRefGoogle Scholar
  13. 13.
    Nair, A., et al.: Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106, 2200–2206 (2002)CrossRefGoogle Scholar
  14. 14.
    Proakis, J., Rader, C., Ling, F., Nikias, C.: Advanced Digital Signal Processing. Mc.Millan, NYC (1992)Google Scholar
  15. 15.
    Pujol, O.: A Semi-Supervised Statistical Framework and Generative Snakes for IVUS Analysis. Universitat Autónoma de Barcelona (2004)Google Scholar
  16. 16.
    Schapire, R.E.: The boosting approach to machine learning: An overview (2002)Google Scholar
  17. 17.
    Zhang, X., McKay, C.R., Sonka, M.: Tissue characterization in intravascular ultrasound images. IEEE Transaction on Medical Imaging 17(6), 889–899 (1998)CrossRefGoogle Scholar
  18. 18.
    Pudil, P., Ferri, F.J., Kittler, J.: Floating search methods for feature selection with nonmonotonic criterion functions. IAPR, 279–283 (1994)Google Scholar
  19. 19.
    Chapelle, O., Zien, A.: Semi-Supervised Classification by Low Density Separation. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pp. 57–64 (2005)Google Scholar
  20. 20.
    Zhu, X.: Semi-supervised learning literature survey. Computer Sciences Technical Report TR 1530, University of Wisconsin-Madison (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francesco Ciompi
    • 1
  • Oriol Pujol
    • 1
  • Oriol Rodriguez Leor
    • 3
  • Carlo Gatta
    • 2
  • Angel Serrano Vida
    • 4
  • Petia Radeva
    • 1
  1. 1.Dep. of Applied Mathematics and AnalysisUniversity of BarcelonaSpain
  2. 2.Computer Vision Center, Campus UABBellaterraSpain
  3. 3.Hospital Universitari “Germans Trias i Pujol”BadalonaSpain
  4. 4.Hospital General de GranollersGranollersSpain

Personalised recommendations