Skip to main content

Edition within a Graph Kernel Framework for Shape Recognition

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5534))

Abstract

A large family of shape comparison methods is based on a medial axis transform combined with an encoding of the skeleton by a graph. Despite many qualities this encoding of shapes suffers from the non continuity of the medial axis transform. In this paper, we propose to integrate robustness against structural noise inside a graph kernel. This robustness is based on a selection of the paths according to their relevance and on path editions. This kernel is positive semi-definite and several experiments prove the efficiency of our approach compared to alternative kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using association graphs. IEEE Trans. on PAMI 21(11), 1105–1120 (1999)

    Article  Google Scholar 

  2. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Trans. on PAMI 26(5), 550–571 (2004)

    Article  Google Scholar 

  3. Goh, W.B.: Strategies for shape matching using skeletons. Computer Vision and Image Understanding 110, 326–345 (2008)

    Article  Google Scholar 

  4. Ruberto, C.D.: Recognition of shapes by attributed skeletal graphs. Pattern Recognition 37(1), 21–31 (2004)

    Article  Google Scholar 

  5. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vision 35(1), 13–32 (1999)

    Article  Google Scholar 

  6. Leymarie, F.F., Kimia, B.B.: The shock scaffold for representing 3d shape. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 216–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Bai, X., Latecki, J.: Path Similarity Skeleton Graph Matching. IEEE PAMI 30(7) (2008)

    Google Scholar 

  8. Vishwanathan, S., Borgwardt, K.M., Kondor, I.R., Schraudolph, N.N.: Graph kernels. Journal of Machine Learning Research 9, 1–37 (2008)

    MATH  Google Scholar 

  9. Suard, F., Rakotomamonjy, A., Bensrhair, A.: Mining shock graphs with kernels. Technical report, LITIS (2006), http://hal.archives-ouvertes.fr/hal-00121988/en/

  10. Neuhaus, M., Bunke, H.: Edit-distance based kernel for structural pattern classification. Pattern Recognition 39, 1852–1863 (2006)

    Article  MATH  Google Scholar 

  11. Dupé, F.X., Brun, L.: Hierarchical bag of paths for kernel based shape classification. In: SSPR 2008, pp. 227–236 (2008)

    Google Scholar 

  12. Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE Transaction on Signal Processing 53(8), 2961–2974 (2005)

    Article  MathSciNet  Google Scholar 

  13. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer, Heidelberg (1984)

    Book  MATH  Google Scholar 

  14. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernel between labeled graphs. In: Proc. of the Twentieth International conference on machine Learning (2003)

    Google Scholar 

  15. DiMatteo, I., Genovese, C., Kass, R.: Bayesian curve fitting with free-knot splines. Biometrika 88, 1055–1071 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meyer, F.: Topographic distance and watershed lines. Signal Proc. 38(1) (1994)

    Google Scholar 

  17. Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. CVIU 95, 1–29 (2004)

    MATH  Google Scholar 

  18. Haussler, D.: Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz (1999)

    Google Scholar 

  19. LEMS: shapes databases, http://www.lems.brown.edu/vision/software/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dupé, FX., Brun, L. (2009). Edition within a Graph Kernel Framework for Shape Recognition. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02124-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02123-7

  • Online ISBN: 978-3-642-02124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics