Skip to main content

Graph Matching Based on Node Signatures

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5534))

Abstract

We present an algorithm for graph matching in a pattern recognition context. This algorithm deals with weighted graphs, based on new structural and topological node signatures. Using these signatures, we compute an optimum solution for node-to-node assignment with the Hungarian method and propose a distance formula to compute the distance between weighted graphs. The experiments demonstrate that the newly presented algorithm is well suited to pattern recognition applications. Compared with four well-known methods, our algorithm gives good results for clustering and retrieving images. A sensitivity analysis reveals that the proposed method is also insensitive to weak structural changes.

This work is partially supported by the French National Research Agency project NAVIDOMASS referenced under ANR-06-MCDA-012 and Lorraine region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Myers, R., Wilson, R.C., Hancock, E.R.: Bayesian Graph Edit Distance. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 628–635 (2000)

    Article  Google Scholar 

  2. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(3), 365–378 (2005)

    Article  Google Scholar 

  3. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  4. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19, 255–259 (1998)

    Article  MATH  Google Scholar 

  5. Bunke, H., Munger, A., Jiang, X.: Combinatorial Search vs. Genetic Algorithms: A Case Study Based on the Generalized Median Graph Problem. Pattern Recognition Letters 20(11-13), 1271–1279 (1999)

    Article  Google Scholar 

  6. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. (2008), doi:10.1016/j.imavis.2008.04.004

    Google Scholar 

  7. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996)

    Article  Google Scholar 

  8. Shokoufandeh, A., Dickinson, S.: Applications of Bipartite Matching to Problems in Object Recognition. In: Proceedings, ICCV Workshop on Graph Algorithms and Computer Vision, September 21 (1999)

    Google Scholar 

  9. Shokoufandeh, A., Dickinson, S.: A unified framework for indexing and matching hierarchical shape structures. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 67–84. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Eshera, M.A., Fu, K.S.: A graph distance measure for image analysis. IEEE Trans. Syst. Man Cybern. 14, 398–408 (1984)

    Article  MATH  Google Scholar 

  11. Sorlin, S., Solnon, C., Jolion, J.M.: A Generic Multivalent Graph Distance Measure Based on Multivalent Matchings. Applied Graph Theory in Computer Vision and Pattern Recognition 52, 151–181 (2007)

    Google Scholar 

  12. Lopresti, D., Wilfong, G.: A fast technique for comparing graph representations with applications to performance evaluation. International Journal on Document Analysis and Recognition 6(4), 219–229 (2004)

    Article  Google Scholar 

  13. Sanfeliu, A., Fu, K.S.: A Distance Measure between Attributed Relational Graphs for Pattern Recognition. IEEE Trans. Systems, Man, and Cybernetics 13(353-362) (1983)

    Google Scholar 

  14. Apostolos, N.P., Yannis, M.: Structure-Based Similarity Search with Graph Histograms. In: Proc. of the 10th International Workshop on Database & Expert Systems Applications (1999)

    Google Scholar 

  15. Gori, M., Maggini, M., Sarti, L.: Exact and Approximate graph matching using random walks. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(7), 1100–1111 (2005)

    Article  Google Scholar 

  16. Chung, R.K.: FAN, Spectral Graph Theory. AMS Publications (1997)

    Google Scholar 

  17. Xu, L., King, I.: A PCA approach for fast retrieval of structural patterns in attributed graphs. IEEE Trans. Systems, Man, and Cybernetics 31(5), 812–817 (2001)

    Article  Google Scholar 

  18. Luo, B., Hancock, E.R.: Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(10), 1120–1136 (2001)

    Article  Google Scholar 

  19. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100), technical report, Columbia Univ. (1996)

    Google Scholar 

  21. Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In: IAPR Workshop SSPR & SPR, pp. 287–297 (2008)

    Google Scholar 

  22. Dosch, P., Valveny, E.: Report on the Second Symbol Recognition Contest. In: Proc. 6th IAPR Workshop on Graphics Recognition, pp. 381–397 (2005)

    Google Scholar 

  23. Harris, C., Stephens, M.: A combined corner and edge detection. In: Proc. 4th Alvey Vision Conf., pp. 189–192 (1988)

    Google Scholar 

  24. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Computing in Euclidean Geometry, pp. 193–233 (1992)

    Google Scholar 

  25. Zahn, C.T.: Graph-theoretical methods for detecting and describing Gestalt clusters. IEEE Trans. on Computers C-20, 68–86 (1971)

    Article  MATH  Google Scholar 

  26. Hofmann, T., Buhmann, J.M.: Multidimensional Scaling and Data Clustering. In: Advances in Neural Information Processing Systems (NIPS 7), pp. 459–466. Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  27. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  28. Dunn, J.: Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4(1), 95–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Carnegie Mellon University face expression database, http://amp.ece.cmu.edu/downloads.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jouili, S., Tabbone, S. (2009). Graph Matching Based on Node Signatures. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02124-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02123-7

  • Online ISBN: 978-3-642-02124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics