Reducing Ambiguity in Tagging Systems with Folksonomy Search Expansion

  • Jeff Z. Pan
  • Stuart Taylor
  • Edward Thomas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5554)


Search facilities are vital for folksonomy (or social tagging mechanism) based systems. Although these systems allow great malleability and adaptability, they also surfer from problems, such as ambiguity in the meaning of tags, flat organisation of tags and some degree of unstabilising factor on consensus about which tags best describe some certain Web resources. It has been argued that folksonomy structure can be enhanced by ontologies; however, as suggested by Hotho et al., a key question remains open: how to exploit the benefits of ontologies without bothering untrained users with its rigidity. In this paper, we propose an approach to address the problem of ambiguity in tagging systems by expanding folksonomy search with ontologies, which are completely transparent to users. Preliminary implementations and evaluations on the efficiency and the usefulness of such expansions are very promising.


Domain Ontology Music Artist Band Member Fuzzy Query Target Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ankolekar, A., Krotzsch, M., Tran, T., Vrandecic, D.: The two cultures: mashing up web 2.0 and the semantic web. In: Proc. of the 16th international World Wide Web conference (WWW 2007), pp. 825–834 (2007)Google Scholar
  2. 2.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.H.L., Patel-Schneider, P.F., Stein, L.A. (eds.): OWL Web Ontology Language Reference, Feburary (2004),
  3. 3.
    Benjamins, R.V., Davies, J., Baeza-Yates, R., Mika, P., Zaragoza, H., Greaves, M., Gomez-Perez, J.M., Contreras, J., Domingue, J., Fensel, D.: Near-term prospects for semantic technologies. IEEE Intelligent Systems 23(1), 76–88 (2008)CrossRefGoogle Scholar
  4. 4.
    Bhogal, J., Macfarlane, A., Smith, P.: A review of ontology based query expansion. Information Processing & Management (4), 866–886 (2007)Google Scholar
  5. 5.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R., Vetere, G.: DL-Lite: Practical Reasoning for Rich DLs. In: Proc. of the DL 2004 Workshop (2004)Google Scholar
  6. 6.
    Greaves, M.: Semantic web 2.0. IEEE Intelligent Systems 22(2), 94–96 (2007)CrossRefGoogle Scholar
  7. 7.
    Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge Representation, Deventer, The Netherlands. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  8. 8.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems. Journal of Web Semantics 3(2), 158–182 (2005)CrossRefGoogle Scholar
  9. 9.
    Halpin, H., Robu, V.n., Shepherd, H.: The complex dynamics of collaborative tagging. In: Proc. of the 16th International World Wide Web Conference (WWW 2007), pp. 211–220 (2007)Google Scholar
  10. 10.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Jackson, C., Wang, H.J.: Subspace: secure cross-domain communication for web mashups. In: Prec. of 16th International World Wide Web Conference (WWW 2007), pp. 611–620 (2007)Google Scholar
  12. 12.
    Lassila, O., Hendler, J.: Embracing ”web 3.0”. IEEE Internet Computing 11(3), 90–93 (2007)CrossRefGoogle Scholar
  13. 13.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Pan, J.Z., Stamou, G., Stoilos, G., Taylor, S., Thomas, E.: Scalable Querying Services over Fuzzy Ontologies. In: Proc. of the 17th International World Wide Web Conference (WWW 2008) (2008)Google Scholar
  15. 15.
    Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontologies. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007), pp. 1434–1439 (2007)Google Scholar
  16. 16.
    Pan, J.Z., Thomas, E., Sleeman, D.: ONTOSEARCH2: Searching and Querying Web Ontologies. In: Proc. of WWW/Internet 2006, pp. 211–218 (2006)Google Scholar
  17. 17.
    Passant, A.: Using Ontologies to Strengthen Folksonomies and Enrich Information Retrieval in Weblogs. In: Proc. of 2007 International Conference on Weblogs and Social Media (ICWSM 2007) (2007)Google Scholar
  18. 18.
    Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  19. 19.
    Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proc. of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006), pp. 2238–2245 (2006)Google Scholar
  20. 20.
    Thomas, E., Pan, J.Z., Sleeman, D.: ONTOSEARCH2: Searching Ontologies Semantically. In: Proc. of OWL: Experiences and Directions (OWL-ED 2007) (2007)Google Scholar
  21. 21.
    Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. The Knowledge Engineering Review (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jeff Z. Pan
    • 1
  • Stuart Taylor
    • 1
  • Edward Thomas
    • 1
  1. 1.Dept. of Computing ScienceUniv. of AberdeenAberdeenUK

Personalised recommendations