An Integrated Approach to Extracting Ontological Structures from Folksonomies

  • Huairen Lin
  • Joseph Davis
  • Ying Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5554)


Collaborative tagging systems have recently emerged as one of the rapidly growing web 2.0 applications. The informal social classification structure in these systems, also known as folksonomy, provides a convenient way to annotate resources by allowing users to use any keyword or tag that they find relevant. In turn, the flat and non-hierarchical structure with unsupervised vocabularies leads to low search precision and poor resource navigation and retrieval. This drawback has created the need for ontological structures which provide shared vocabularies and semantic relations for translating and integrating the different sources. In this paper, we propose an integrated approach for extracting ontological structure from folksonomies that exploits the power of low support association rule mining supplemented by an upper ontology such as WordNet.


Ontological structure Folksonomy Collaborative tagging system 


  1. 1.
    Auchard, E.: Flickr to map the world’s latest photo hotspots. (2007)Google Scholar
  2. 2.
    Vander, T.: Folksonomy Coinage and Definition (2007),
  3. 3.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  4. 4.
    Wikipedia: Tag cloud. Wikipedia, The Free Encyclopedia (2009)Google Scholar
  5. 5.
    Suchanek, F.M., Vojnovic, M., Gunawardena, D.: Social tags: Meaning and Suggestions. In: ACM Conference on Information and Knowledge Management (CIKM 2008), pp. 223–232. ACM, Napa (2008)Google Scholar
  6. 6.
    Mathes, A.: Folksonomies-Cooperative Classification and Communication Through Shared Metadata. Computer Mediated Communication, LIS590CMC (2004)Google Scholar
  7. 7.
    Stuckenschmidt, H., Harmelen, F.V.: Information Sharing on the Semantic Web. Springer, Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    A1-Khalifa, S., Davis, C.: Measuring the Semantic Value of Folksonomies. Innovations in Information Technology (2006)Google Scholar
  9. 9.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semantics 5, 5–15 (2007)CrossRefGoogle Scholar
  10. 10.
    Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems. Stanford InfoLab Technical Report (2006)Google Scholar
  11. 11.
    Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining Association Rules in Folksonomies. In: Proceedings of the 10th IFCS Conference, Studies in Classification, Data Analysis, and Knowledge Organization (2006)Google Scholar
  12. 12.
    Schwarzkopf, E., Heckmann, D., Dengler, D., Kroner, A.: Mining the Structure of Tag Spaces for User Modeling. In: Workshop on Data Mining for User Modeling (ICUM 2007) (2007)Google Scholar
  13. 13.
    Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Damme, C.V., Hepp, M., Siorpaes, K.: FolksOntology: An Integrated Approach for Turning Folksonomies into Ontologies. In: Proc. of the ESWC Workshop Bridging the Gap between Semantic Web and Web (2007)Google Scholar
  15. 15.
    An, Y.J., Geller, J., Wu, Y.-T., Chun, S.A.: Automatic Generation of Ontology from the Deep Web. Database and Expert Systems IEEE 2007 (2007)Google Scholar
  16. 16.
    Laniado, D., Eynard, D., Colombetti, M.: Using WordNet to turn a folksonomy into a hierarchy of concepts. In: Proc. of 4th Italian Semantic Web Workshop, Italy (2007)Google Scholar
  17. 17.
    Schreiber, A.T.G., Dubbeldam, B., Wielemaker, J., Wielinga, B.: Ontology-Based Photo Annotation. IEEE Intelligent Systems (2001)Google Scholar
  18. 18.
    Schmitz, P.: Inducing Ontology from Flickr Tags. In: Proceedings of the Collaborative Web Tagging Workshop (WWW 2006), Edinburgh, UK (2006)Google Scholar
  19. 19.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data (1993)Google Scholar
  20. 20.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on Very Large Data Bases (1994)Google Scholar
  21. 21.
    Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman, J., Yang, C.: Finding interesting associations without support pruning. Transactions on Knowledge and Data Engineering 13, 64–78 (2001)CrossRefGoogle Scholar
  22. 22.
    Spertus, E., Sahami, M., Buyukkokten, O.: Evaluating similarity measures: a large-scale study in the orkut social network. In: Proceedings of the 11th ACM SIGKDD intl. conference on Knowledge Discovery in Data mining, Chicago, USA (2005)Google Scholar
  23. 23.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)zbMATHGoogle Scholar
  24. 24.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an Algorithm and an Implementation of Semantic Matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Wallace, M.: Jawbone (2007),
  26. 26.
    Dellschaft, K., Staab, S.: Strategies for the evaluation of ontology learning. In: Buitelaar, P., Cimiano, P. (eds.) Ontology learning and population: Bridging the gap between text and knowledge. IOS Press, Amsterdam (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Huairen Lin
    • 1
  • Joseph Davis
    • 1
  • Ying Zhou
    • 1
  1. 1.School of Information TechnologiesThe University of SydneyAustralia

Personalised recommendations