Hybrid Adaptive Web Service Selection with SAWSDL-MX and WSDL-Analyzer

  • Matthias Klusch
  • Patrick Kapahnke
  • Ingo Zinnikus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5554)


In this paper, we present an adaptive, hybrid semantic matchmaker for SAWSDL services, called SAWSDL-MX2. It determines three kinds of semantic service similarity with a given service request, that are logic-based, text-based and structural similarity. In particular, the degree of structural service similarity is computed by the WSDL-Analyzer tool [12] by means of XMLS tree edit distance measurement, string-based and lexical comparison of the respective XML-based WSDL services. SAWSDL-MX2 then learns the optimal aggregation of these different matching degrees over a subset of a test collection SAWSDL-TC1 based on a binary support vector machine-based classifier. Finally, we compare the retrieval performance of SAWSDL-MX2 with a non-adaptive matchmaker variant SAWSDL-MX1 [1] and the straight forward combination of its logic-based only variant SAWSDL-M0 with WSDL-Analyzer.


Description Logic Service Request Retrieval Performance Service Description Semantic Annotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Klusch, M., Kapahnke, P.: Semantic Web Service Selection with SAWSDL-MX. In: Proceedings of the 2nd Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web (SMR2) (2008)Google Scholar
  2. 2.
    Joachims, T., Radlinski, F.: Search Engines that Learn from Implicit Feedback. Computer 40(8), 34–40 (2007)CrossRefGoogle Scholar
  3. 3.
    Kaufer, F., Klusch, M.: WSMO-MX: A Logic Programming Based Hybrid Service Matchmaker. In: Proceedings of the 4th IEEE European Conference on Web Services (ECOWS 2006). IEEE CS Press, Zurich (2006)Google Scholar
  4. 4.
    Kiefer, C., Bernstein, A.: The Creation and Evaluation of iSPARQL Strategies for Matchmaking. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 463–477. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with OWLS-MX. In: Proceedings of 5th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Hakodate, Japan. ACM Press, New York (2006)Google Scholar
  6. 6.
    Klusch, M.: Semantic Web Service Coordination. In: Schumacher, M., Helin, H., Schuldt, H. (eds.) CASCOM - Intelligent Service Coordination in the Semantic Web, ch. 4. Birkhäuser Verlag/ Springer (2008)Google Scholar
  7. 7.
    Kourtesis, D., Paraskakis, I.: Combining SAWSDL, OWL-DL and UDDI for Semantically Enhanced Web Service Discovery. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 614–628. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Li, K., Verma, K., Mulye, R., Rabbani, R., Miller, J.A., Sheth, A.P.: Semantic Web Processes and Their Applications. In: Cardoso, J., Sheth, A. (eds.) Designing Semantic Web Processes: The WSDL-S Approach. Springer, Heidelberg (submitted)Google Scholar
  9. 9.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  10. 10.
    Iman, R.L., Davenport, J.M.: Approximations of the critical region of the friedman statistic. Communications in Statistics A9, 571 (1980)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hull, D.: Using statistical testing in the evaluation of retrieval experiments. In: Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 329–338 (1993)Google Scholar
  12. 12.
    Zinnikus, I., Rupp, H.J., Fischer, K.: Detecting Similarities between Web Service Interfaces: The WSDL Analyzer. In: Second International Workshop on Web Services and Interoperability (WSI 2006), Pre-conference Workshop of Conference on Interoperability for Enterprise Software and Applications, I-ESA 2006, March 20-21, Bordeaux (2006)Google Scholar
  13. 13.
    Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classification (2007)Google Scholar
  14. 14.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory Pittsburgh, Pennsylvania, United States, pp. 144–152 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthias Klusch
    • 1
  • Patrick Kapahnke
    • 1
  • Ingo Zinnikus
    • 1
  1. 1.German Research Center for Artificial IntelligenceSaarbrückenGermany

Personalised recommendations